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 Airports, Air Pollution, and
 Contemporaneous Health
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 We link daily air pollution exposure to measures of contemporaneous health for communities
 surrounding the twelve largest airports in California. These airports are some of the largest sources of
 air pollution in the US, and they experience large changes in daily air pollution emissions depending on
 the amount of time planes spend idling on the tarmac. Excess airplane idling, measured as residual daily taxi

 time, is due to network delays originating in the Eastern US. This idiosyncratic variation in daily airplane

 taxi time significantly impacts the health of local residents, largely driven by increased levels of carbon
 monoxide (CO) exposure. We use this variation in daily airport congestion to estimate the population dose-
 response of health outcomes to daily CO exposure, examining hospitalization rates for asthma, respiratory,

 and heart-related emergency room admissions. A one standard deviation increase in daily pollution levels
 leads to an additional $540 thousand in hospitalization costs for respiratory and heart-related admissions
 for the 6 million individuals living within 10 km (6.2 miles) of the airports in California. These health
 effects occur at levels of CO exposure far below existing Environmental Protection Agency mandates, and
 our results suggest there may be sizable morbidity benefits from lowering the existing CO standard.

 Key words : Health effects of pollution, Airport congestion, Network delays, Instrumental variables.

 JEL Codes: Q53,J1,C26

 The effect of pollution on health remains a highly debated topic. The US Clean Air Act (CAA)
 requires the Environmental Protection Agency (EPA) to develop and enforce regulations to protect
 the general public from exposure to airborne contaminants that are known to be hazardous to
 human health. In January 2011, the EPA decided against lowering the existing CAA carbon
 monoxide standard due to insufficient evidence that relatively low carbon monoxide (CO) levels
 adversely affect human health. In order to assess the benefits of lowering the standard, accurate
 estimates are needed that link contemporaneous air pollution exposure to observable health
 outcomes at levels of pollution currently faced by local populations. However, these estimates are
 hard to come by as pollution is rarely randomly assigned across individuals, and individuals who
 live in areas of high pollution may be in worse health for reasons unrelated to pollution. Preferences

 for clean air may co vary with unobservable determinants of health (e.g. exercise), which can
 lead to various forms of omitted variable bias in regression analysis. Moreover, heterogeneity
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 769

 across individuals in either preference for, or health responses to, ambient air pollution implies
 that individuals may self-select into locations on the basis of these unobserved differences. In
 both cases, estimates of the health effects of ambient air pollution may reflect the response of
 various subpopulations and/or spurious correlations pertaining to omitted variables. While recent
 research attempts to address the issue of non-random assignment using various econometric
 tools such as fixed effects or instrumental variables, these studies often focus on infant health

 over longer periods of time (Chay and Greenstone, 2003; Currie and Neidell, 2005). Much less
 is known about short-term, daily effects of ambient air pollution on the health of the more general
 population, such as the non-elderly, non-child, adult population.1

 We develop a framework for estimating the contemporaneous effect of air pollution on health
 using variation in local air pollution driven by airport runway congestion. Airports are one of the
 largest sources of air pollution in the US with Los Angeles International Airport (LAX) being the
 largest source of carbon monoxide in the state of California (Environmental Protection Agency,
 2005). A large fraction of airport emissions come from airplanes, with the largest aggregate
 channel of emissions stemming from airplane idling (Transportation Research Board, 2008). We
 show that airport runway congestion, as measured by the total time planes spent taxiing between
 the gate and the runway, is a significant predictor of local pollution levels. Since local runway
 congestion may be correlated with other determinants of pollution such as weather, we exploit
 the fact that California airport congestion is driven by network delays that began in large airports
 outside of California.2 A recent article in the New York Times (New York Times 27 January,
 2012) provides a useful motivation:

 [Airplane] delays ripple across the country. A third of all delays around the nation each
 year are caused, in some way, by the New York airports, according to the F.A.A. Or, as
 Paul McGraw, an operations expert with Airlines for America, the industry trade group,

 put it, 'When New York sneezes, the rest of the national airspace catches a cold'.

 Our analysis hence links health outcomes of residents living near California airports to changes in
 air pollution driven by runway congestion at airports on the East Coast. The identifying variation
 in California pollution is caused by events several thousand miles away (e.g. weather in Atlanta),
 which is unlikely to be correlated with determinants of health in California.

 The goal of this article is to identify the ways in which short run, daily variation in air pollution

 affects population health. In doing so, this article makes four primary contributions to the existing
 literature in this area. First, while most existing literature focuses on the health impacts of infants

 or elderly, we are able to examine the health responses of the entire population. We find that

 1 . There is a larger literature in epidemiology which focuses on daily responses to air pollution (see e.g. Ito et al.
 (2007), Linn et al. (1987), Peel et al. (2005), Schildcrout et al. (2006), Schwartz et al. (1996)). The work in our article
 complements the existing epidemiological literature by focusing on issues pertaining to measurement error, avoidance
 behaviour, and self-selection bias in the context of susceptibility to pollution exposure. Each of these issues is critically
 important to providing unbiased estimates of the causal relationship between pollution and health. The instrumental
 variables approach in this article exploits arguably exogenous pollution shocks that are unlikely to be known by local
 residents, allowing us to simultaneously address issues of measurement error and avoidance behaviour. Recent work
 in economics and environmental health, discussed in more detail below, suggests that short run variation in pollution
 exposure may be significant predictors of mortality and morbidity (Moretti and Neidell, 201 1; Knittel et al ., 201 1).

 2. This relationship is well known within the transportation literature (Weiman et al., 2010). Optimal airplane
 scheduling incorporates anticipated ripple effect. For example, Pyrgiotisa et al. (2013) use queuing theory to simulate
 how delays propagate through the system. They quote a study that found a multiplier effect of seven, i.e., each 1-hour
 delay of a particular airplane leads to a combined 7 hours delay for the airline.
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 770 REVIEW OF ECONOMIC STUDIES

 infants as well as the elderly are most sensitive to ambient air pollution. At the same time, a one-
 unit increase in pollution has much larger aggregate effects for adults aged 20-64 years, given
 their large share of the overall population. Studies that focus on infants or the elderly significantly
 underestimate overall health effects.

 The second contribution of this article is to estimate the contemporaneous effect of multiple
 pollutants simultaneously. It has traditionally been difficult to decipher which pollutant is
 responsible for adverse health outcomes since short-term fluctuations among ambient air
 pollutants are highly correlated. Our solution to this identification problem is to rely on the fact
 that wind speed and wind direction transport individual pollutants in different ways. By using
 interactions between taxi time, wind speed, and wind angle from airports, we can pin down the
 direct effect of each pollutant, while holding the others constant. We use over-identified models to

 instrument for several pollutants simultaneously, an approach that was simultaneously developed
 in related work by Knittel et al. (2011). We find that CO is responsible for the majority of the
 observed increase in hospital admissions, although we cannot rule out that this may be driven by
 other unobserved pollutants that are correlated with airplane-driven CO emissions. This finding
 has direct policy implications. The EPA recently decided to maintain the current CO pollution
 standard, citing a lack of evidence that reducing CO below current ambient levels would improve
 population health outcomes.

 We believe there are two additional features that set this article apart from existing work
 in both economics and epidemiology. Our article is most closely related to the recent work
 of Moretti and Neidell (2011) and Knittel et al. (2011) who also instrument daily pollution
 in health regressions with variation in local transportation conditions (i.e. container shipping
 in Long Beach, CA, and automobile congestion in Central and Southern CA, respectively).
 Relative to these article and the existing literature, we believe this paper is the first to use the
 network structure of transportation to generate local variation in congestion that is driven by
 events that occur several thousand miles away. This matters because one of the key drivers of
 transportation congestion is local weather, and local weather is also likely to affect ambient
 pollution, violating the identifying assumptions of the model. By way of example, we show that
 instrumenting local airport congestion with network delays that are not correlated with local
 weather doubles our point estimates, relative to the baseline case. We also explicitly model
 the spatial dispersion of air pollution emissions, as it varies with wind speed, wind direction,
 and distance from the airport. Pollutant transport is very locally heterogeneous, and failing to
 account for this spatial heterogeneity leads to bias when estimating the population dose-response
 function.

 The fourth contribution of this study is the use of newly available Emergency Discharge Data
 to better capture the morbidity impacts of air pollution. Previous research has predominantly
 focused on the effects of pollution on mortality or morbidity as measured in Inpatient
 Discharge Records. Inpatient Discharge data consist only of observations for patients that stayed
 overnight in a hospital, and thus exclude a large fraction of respiratory-related emergency room
 admissions that do not require overnight hospital visits. We show that estimates using the more
 commonly used Inpatient Discharge data substantially underestimate the morbidity impacts of air
 pollution, relative to estimates from the combined Emergency Discharge and Inpatient Discharge
 datasets.3

 In summary, our approach combines newly available data with arguably exogenous daily
 changes in air pollution that originate several thousand miles away and are unknown to the

 3. Knittel et al. (201 1) focus on infant mortality, while Moretti and Neidell (201 1) examine morbidity outcomes,

 but only for individuals of Emergency Room visits that eventually get admitted to an overnight stay as the authors rely
 on the Inpatient Discharge data.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 77 1

 local population. The instrumental variables setting allows us to simultaneously address issues
 pertaining to both avoidance behaviour and classical forms of measurement error, each of
 which lead to significant downward bias in conventional dose-response estimates. The primary
 estimation framework examines how zip code level emergency room admissions covary with
 these quasi-experimental increases in air pollution stemming from airports.

 We find that a one standard deviation increase in daily pollution explains roughly one third
 of average daily admissions for asthma problems. It leads to an additional $540 thousand per
 day in hospitalization costs for respiratory and heart related admissions of individuals within
 10 km of one of the twelve largest airports in California. This is likely a significant lower bound
 of the social costs as the willingness to pay to avoid a sickness might be significantly larger
 than the medical reimbursement cost (Grossman, 1972). Our baseline IV estimates are an order

 of magnitude larger than uninstrumented fixed effects estimates, highlighting the importance of
 accounting for measurement error and/or avoidance behaviour in conventional estimators. We
 find no evidence that airport runway congestion affects diagnoses unrelated to air pollution such
 as bone fractures, stroke, or appendicitis. We also present a variety of evidence in favour of a
 non-linear dose-response function. As pollution levels increase the marginal effect of a 1 unit
 increase in pollution increases but at a decreasing rate. This is consistent with thresholds at which
 the health effect of air pollution levels off (i.e. the dose-response function is not convex over
 the levels of pollution we observe), and along the lines of what research in epidemiology has
 observed (Pope et al ., 2009; Pope III et al ., 2011).

 We present several sensitivity checks of results that do not alter our conclusions. For example,
 we focus on morning airport congestion in the East since it is possible that California airport delays
 impact airports on the East Coast, which then feedback to California airports. Due to the difference
 in time zones, very few flights from California reach East Coast airports before 12 pm. Estimates
 remain similar to our baseline estimates. A distributed lag model finds no evidence for delayed
 impacts or forward displacement, i.e., that individuals on the brink of an asthma or heart attack
 may experience an episode that would have otherwise occurred in the next few days anyway.
 A Poisson model linking sickness counts to pollution levels gives comparable estimates to our
 baseline linear probability model, which does not account for the truncation of daily sickness
 rates at zero. Finally, we find little evidence of treatment effect heterogeneity that would raise
 concerns pertaining to forms of self-selection bias and/or the external validity of the underlying
 dose-response estimates.

 The findings in this article suggest that daily variation in ambient air pollution has
 economically significant health effects at levels below current EPA mandates, at least for the
 population that comprises our study. We believe this is particularly important due to the fact
 that in January 2011, the EPA decided against lowering the existing CAA CO standard due to
 insufficient evidence that relatively low CO levels adversely affect human health. The maximum
 hourly CO concentration in our data is 7.5 ppm (see Supplementary Table A2), which is below
 the ambient air quality standard of 35 ppm for any 1-hour reading or 9 ppm for any 8-hour
 average, i.e., air quality levels were always within the limit.4 Yet, fluctuations in pollution levels
 significantly below the standard still have sizable health consequences. While a full-fledged
 benefit-cost analysis would have to balance the cost of reducing CO against the benefits, EPA
 indicated there were no appreciable benefits from lowering the standard to begin with, which we
 find not to be the case.

 4. The same is not true for NO2. The maximum 1-hour reading in our data is 136 ppb, which is above the 1-hour
 standard of 100 ppb.
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 772 REVIEW OF ECONOMIC STUDIES

 1 . BACKGROUND: AIRPORTS, AIRPLANES, AND AIR POLLUTION

 Regulators have long been aware of the pollution generated by cars, trucks, and public transit.
 There have been countless legislative policies designed to curtail harmful emissions from these
 sources (Auffhammer and Kellogg, 2011). However, aircraft and airport emissions have only
 recently become the subject of regulatory scrutiny, although little has been done to reduce or
 manage emissions generated by airports and air travel. While there has been some effort to curtail

 the substantial CO2 emissions generated by aircraft,5 there has been relatively little effort to
 control or contain some of the more pernicious air pollutants generated by jet engines. This lack
 of regulatory scrutiny can be traced back to the way in which pollutants are regulated in the
 US under the Clean Air Act. Current Federal law preempts all federal, state, and local agencies
 except the Federal Aviation Administration from establishing measures to reduce emissions from
 aircraft due to potential interstate and international commerce conflicts that might arise from
 other decentralized regulations.6

 Aircraft jet engines, like many other mobile sources, produce carbon dioxide (CO2), nitrogen
 oxides (NO*), carbon monoxide (CO), oxides of sulphur (SO*), unburned or partially combusted
 hydrocarbons (also known as volatile organic compounds, or VOCs), particulates, and other
 trace compounds (Federal Aviation Administration, 2005). Each of these pollutants is emitted
 at different rates during various phases of operation, such as idling, taxing, takeoff, climbing,
 and landing. NO* emissions are higher during high power operations like takeoff when
 combustor temperatures are high. On the other hand, CO emissions are higher during low power
 operations like taxiing when combustor temperatures are low and the engine is less efficient
 (Federal Aviation Administration, 2005).7 Even though the aircraft engine is often idling during
 taxi-out, the per minute CO and NO* emissions factors are higher than at any other stage of a
 flight (Environmental Protection Agency, 1992). Combining this with the long duration of taxi-
 out times during peak periods of the day, total taxiing over the course of a day can add up to a
 substantial amount. Consistent with these facts, Los Angeles International airport is estimated to
 be the largest point source of CO emissions in the state of California, the second largest of NO*,
 the twenty-ninth largest of SO2, and the 2,763 and 2,782 largest of PM10 and PM2.5, respectively
 (Environmental Protection Agency, 2005).

 Airports provide a particularly compelling setting through which to estimate the contempo-
 raneous relationship between air pollution and health. Not only are airports some of the largest
 polluters of ambient air pollution in the US but they also have extraordinarily rich data on daily
 operating activity, detailing for each domestic flight the length of time spent taxiing to and from
 the gate before takeoff and after landing. This allows for a precise understanding of the aggregate
 amount of daily runway congestion at airports. Moreover, daily runway congestion at airports
 exhibits a great degree of residual variation even after controlling for normal scheduling patterns.
 Much of the variation in runway congestion is driven by network delays propagating from major
 airport hub delays thousands of miles away. Network delays at distant airports serve as an ideal
 instrumental variable for local pollution; the effect of a snow storm in Chicago on congestion at
 LAX should be orthogonal to any other confounding influences of air pollution in the Los Angeles

 5. The European Union has recently approved greenhouse gas measures, which oblige airlines, regardless of
 nationality, that land or take off from an airport in the European Union to join the emissions trading system starting on

 1 January, 2012.
 6. Currently, the EPA has an agreement with the FAA to voluntarily regulate ground support

 equipment at participating airports known as the Voluntary Airport Low Emission (VALE) program
 (United States Environmental Protection Agency, 2004).

 7. As a result, reducing engine power for a given operation like takeoff or climb out generally increases the rate
 of CO emissions and reduces the rate of NO* emissions.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 773

 area. In addition, local residents are likely unaware of increases in taxi time and hence cannot
 engage in self-protective behaviour. Finally, every airport has detailed weather data, allowing
 researchers to exploit the spatial distribution of airport-generated pollution. We can therefore
 estimate how areas downwind of an airport on a given day are disproportionately affected by
 runway congestion relative to areas upwind. Understanding this spatial variation in pollutant
 transport improves the efficiency of our estimates, while also providing important tests of the
 validity of our research design.

 2. DATA

 This project uses the most comprehensive data currently available on airport traffic, air pollution,
 weather, and daily measures of health in California. These data are rich in both temporal and
 spatial dimension, allowing for fine-grained analysis of how daily airport congestion impacts
 areas downwind of an airport on a given day. The various datasets and linkages are described in
 more detail below.

 2. 1 . Airport traffic data

 A useful feature of a study involving airports is the detailed nature of daily flight data. The Bureau
 of Transportation Statistics (BTS) Airline On-Time Performance Database contains flight-level
 information by all certified US air carriers that account for at least 1% of domestic passenger
 revenues. It has a wealth of information on individual flights: flight number, the origin and
 departure airport, scheduled departure and arrival times, actual departure and arrival times, the
 time the aircraft left the runway and when it touches down. We construct a daily congestion
 measure for each of the twelve major airports in California by aggregating the combined taxi time

 of all airplanes at an airport. This measure consists of ( 1 ) the time airplanes spend between leaving
 the gateway and taking off from the runway and (2) the time between landing and reaching the
 gate. An interesting feature of aggregate daily taxi time is the large amount of residual variation
 remaining after controlling for daily airport scheduling, weather, and holidays. We relate this
 variation to local measures of pollution and health in our econometric analysis. One caveat of
 the BTS data is that it only includes information for major domestic airline passenger travel.8
 As long as international flights are not treated differently in the queuing system and are hence
 colinear to the taxi time of domestic flights, congestion of national flights should be a good proxy
 for overall congestion.

 We limit our analysis to the twelve largest airports in California by passenger count. These
 airports are in alphabetical order (including airport call sign in brackets): Burbank (BUR),
 Los Angeles International (LAX), Long Beach (LGB), Oakland International (OAK), Ontario
 International (ONT), Palm Springs (PSP), San Diego International (SAN), San Francisco
 International (SFO), San Jose International (S JC), Sacramento International (SMF), Santa Barbara
 (SB A), and Santa Ana / Orange County (SNA). The locations of these airports are shown as dots in
 Figure 1 . Average flight statistics at each of these airports are reported in Supplementary Table Al .
 There is significant variation in daily ground congestion at airports: the standard deviation of daily
 taxi time at the largest airport (LAX) is 1 ,852 minutes. Once we account for year, month, weekday
 and holiday fixed effects as well as local weather, the remaining variation is still 891 minutes.
 Most of the airports are close to urban areas as they serve the travel needs of these populations.

 8. In January 2005, international departures (both cargo and passenger) accounted for 8.5% of total departures,
 whereas cargo (both international and domestic) accounted for 5.9% of all US airport departures (Department of
 Transportation, 2009).
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 774 REVIEW OF ECONOMIC STUDIES

 Figure 1

 Location of airports, pollution monitors, and zip codes.

 Notes: The 12 largest airports in California are shown as dots. The location of CO pollution monitors in the California Air
 Resource Board (CARB) data base are shown as x, the location of NO2 monitors as +. Zip code boundaries are shown in
 grey. They are shaded if the centroid is within 10 km (6.2 miles) of an airport.

 Seven airports in California rank among the top fifty busiest airports in the nation according to
 passenger enplanement (Federal Aviation Administration, 2009).

 A potential concern when linking daily airport activity to daily ambient air pollution levels is
 that runway congestion in California airports may be highest in the late afternoon and evening.
 This would lead us to erroneously misclassify some of the daily airport effects to the wrong day.
 Supplementary Figure A2 plots the distribution of aggregate taxi time within a day. Most ground
 activity at airports is skewed towards the beginning of the day. We will address the sensitivity
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 775

 of our estimates towards these issues of misclassification or across-day spillovers in subsequent
 sections.

 2.2. Pollution data

 We construct daily measures of air pollution surrounding airports using the monitoring network
 maintained by the California Air Resource Board (CARB). This database combines pollution
 readings for all pollution monitors administered by CARB, including information on the exact
 location of the monitor. Data includes both daily and hourly pollution readings. We concentrate
 on the set of monitors with hourly emission readings for CO, NO2, and O3 in the years 2005-7. 9
 The locations of all CO and NO2 monitors in relation to airports are shown in Figure 1 .

 A unique feature of pollution data is the significant number of missing observations in the
 database. We therefore use the following algorithm when we aggregate the hourly data to daily
 pollution readings: Our measure of the daily maximum pollution reading is simply the maximum
 of all hourly pollution readings. The daily mean is the duration-weighted average of all hourly
 pollution readings. We define the duration as the number of hours until the next reading.10 We
 prefer this approach to simply taking the arithmetic average of all hourly readings on a day since

 hourly pollution data exhibit great temporal dependence. A missing hourly observation is better
 approximated by the previous non-missing value than the daily average. We also keep track of
 the number of observations per day. In a sensitivity check (not reported) we rerun the analysis
 using only monitors with at least 20 or 12 readings per day.11

 We create daily zip code pollution measures by taking the average monitor reading
 of all monitors within 15 km of a zip code centroid, weighting by the inverse distance
 between the monitor and the zip code centroid.12 Summary statistics are given in Panel A of
 Supplementary Table A2. Since we have both the longitude and latitude of all airports and zip
 code centroids, we are able to derive (1) the distance between the airport and a zip code, and (2)
 the angle at which the zip code is located relative to the airport. In order to leverage the spatial
 features of our data, we normalize the angle between a zip code centroid and an airport to 0 if the

 zip code is lying to the north of the airport. Degrees are measured in clockwise fashion, e.g. a zip
 code that is directly east of an airport will have an angle of 90°. The angle between an airport
 and a zip code allows us to explore the link between airport emissions and pollution downwind
 of airports using the weather data described next.

 9. While data exist for other pollutants in California, we limit our analysis to using CO, NO2 as they are directly
 emitted by airplanes and have better coverage than PM10. O3 forms from VOC and NO*. In a sensitivity check we do
 not find that O3 pollution levels are impacted by airport congestion. Nevertheless, we present sensitivity analyses that
 include O3 and PM10 as controls with little effect on our results. While monitor data exists as far back as 1993, portions
 of our hospital data, described further in this section, exists only from 2005 onwards.

 10. Readings occur on the hour of each day ranging from midnight to 1 1 pm. If readings at the beginning of a day

 (midnight, 1 am, etc.) are missing, we adjust the duration of the first reading from midnight to the second reading. For
 example, if readings occur on 3 am, 5 am, and 8 am, the 3 am reading would be assigned a duration of 5 hours and the
 5 am reading would be assigned a duration of 3 hours. By the same token, if the last reading of a day is not 11pm, the
 duration of that last reading is from the time of the reading until midnight.

 11. If a monitor has not a single reading for a day, we approximate its value in a three step procedure: ( 1 ) we derive

 the cumulative density function (cdf) at each monitor; (2) take the inverse-distance weighted average of the cdf for a given

 day at all monitors with non-missing data; (3) we fill the missing observation with the same percentile of the station's
 cdf. For example, if surrounding monitors with non-missing data on average have pollution levels that correspond to the
 80th percentile of their respective distributions, we fill the missing value of a station with the 80th percentile of its own

 distribution of pollution readings. This procedure gives us a balanced panel.
 12. Inverse distance weighting pollution measures has been used to impute pollution in previous research. See for

 example, Currie and Neidell (2005).
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 776 REVIEW OF ECONOMIC STUDIES

 2.3. Weather data

 We use temperature, precipitation, and wind data in our analysis to both control for the direct
 effects of weather on health (Deschênes et al., 2009) and also to leverage the quasi-experimental
 features of wind direction and wind speed in distributing airport pollution from airports. Our
 weather data comes from Schlenker and Roberts (2009), which provides minimum and maximum
 temperature as well as total precipitation at a daily frequency on a 2.5 x 2.5 mile grid for the entire
 US.13 To assign daily weather observations to an airport or zip code, we use the grid cell in which
 the zip code centroid is located. Summary statistics for the zip-code level data are given in Panel
 B of Supplementary Table A2.

 Average wind speed and wind direction come from the National Climatic Data by the National
 Oceanic and Atmospheric Administration's (NOAA) hourly weather stations. Most airports have
 weather stations with hourly readings. We construct wind direction, which is normalized to equal
 zero if the wind is 'blowing' northward and counted in clockwise fashion. If the angles of the zip
 code and the wind direction are identical, the zip code is hence exactly downwind from the airport.

 An angle of 180° implies that the zip code is upwind from the airport. The hourly wind speed
 and wind direction is aggregated to the daily level by calculating the duration-weighted average
 between readings comparable to the pollution data above. The distribution of wind directions is
 shown in Figure 2. Airports at the ocean predominantly have winds coming from the direction of
 the ocean. For example, Santa Barbara, located on the only portion of the California coast that
 runs east-west has winds blowing northward. Note again that we are measuring the direction
 in which the wind is blowing, not from which it is coming. In our empirical analysis, we use
 this daily variation in wind speed and wind direction to predict how pollution from airports
 disproportionately impacts some zip codes more than others on a given day.

 2.4. Hospital discharge and emergency room data

 Health effects are measured by overnight hospital admission and emergency room visits to any
 hospital in the state of California. We use the California Emergency Department & Ambulatory
 Surgery data set for the years 2005-7. 14 The dataset gives the exact admission date, the zip code of
 the patient's residence (as well as the hospital), the age of the patient, as well as the primary and up
 to twenty-four secondary diagnosis codes. An important limitation of the Emergency Department
 data is that any person who visits an ER and is subsequently admitted to an overnight stay drops
 out of the dataset. This is done to prevent double counting in California's hospital admissions
 records, as overnight hospital stays are logged in California's Inpatient Discharge data. Therefore,
 we also obtained Inpatient Discharge data for all individuals who stayed overnight in a hospital
 in the years 2005-7. In our baseline model, we focus on the sum of emergency room visits and
 overnight stays in a zip code-day to avoid non-random attrition in the ER data. Focusing only on
 emergency room admittance would suffer from selection bias as higher pollution levels (and more
 severe health outcomes) could result in more overnight stays, yet the emergency room numbers
 would actually appear smaller.

 We count the daily admissions of all people in a zip code who had a diagnosis code pertaining
 to three respiratory illnesses: asthma, acute respiratory, and all respiratory. Note that each category

 13. There is one exception: in a set of regression models where we estimate the effect of airport weather on taxi
 time we use the closest non-missing daily weather station data from NOAA's COOP station data set for each airport. This
 is because Schlenker and Roberts (2009) use a spatial interpolation procedure that might result in artificial correlation
 between weather data at airports due to the spatial interpolation technique.

 14. The Emergency Room data was not collected prior to 2005.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 111

 Figure 2

 Histogram of daily wind direction at airports.

 Notes: Histogram of the distribution of daily directions in which the wind is blowing (2005-7). Plot is normalized to the
 most frequent category. The four circles indicate the quartile range. Airport locations are shown in Figure 1 .

 adds additional sickness counts but includes the previous. For example, asthma attacks are also
 counted in all respiratory problems. We also count heart-related problems, which Peters et al.
 (2001) have shown to be correlated with pollution. Finally, we include three placebos: stroke,
 bone fractures, and appendicitis.15 In our baseline model, we count a patient as suffering from a
 sickness if either the primary or one of the secondary diagnosis codes lists the illness in question.

 We merge the zip code level hospital data with age-specific population counts in each zip
 code obtained from both the 2000 and 2010 Censuses. We use the weighted average between
 the 2000 (weight 0.4) and 2010 (weight 0.6) counts, as the midpoint of our data is 2006. We
 limit our analysis to the 164 zip codes whose centroid lies within 10 km of an airport and
 which have at least 10,000 inhabitants.16 The total population of these 164 zip codes is around
 6 million people, or roughly one sixth of the overall population of California at the time. Summary
 statistics for the zip codes in the study are given in Panel C of Supplementary Table A2. We use

 15. The exact ICD-9 codes are: asthma: [493, 494); acute respiratory: [460,479), [493,495), [500,509), [514,515),
 [5 16,520); all respiratory: [460, 520); heart problems: [410, 430); stroke [430, 439); bone fractures [800, 830); appendicitis:
 [540, 544).

 16. The latter sample restriction excludes 0.8% of the total population that lives in a zip code whose centroid is
 within 10 km of an airport but has less than 10,000 inhabitants.
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 778 REVIEW OF ECONOMIC STUDIES

 these age-specific population counts to construct daily hospitalization rates for each zip code.
 Supplementary Table A3 provides sickness rates per 10 million inhabitants for both the entire
 population as well as population subgroups of those over 65 years of age and under 5 years
 of age.

 2.5. External validity - populations close to airports

 Our analysis focuses on areas within 10 km of airports. This raises the broader question as to
 how our estimated results generalize to populations outside of the 10 km airport radius. Table A4
 investigates this question by examining zip code characteristics from the 2000 Census. We present
 three comparisons: First, we look at zip codes that are in our sample in columns (la)-(lc) but
 divide them into zip codes whose centroids are within [0,5] km and (5,10] km of an airport.
 Second, we compare zip codes within 10 km of an airport versus neighbouring zip codes that
 are between 10 km and 20 km of an airport in columns (2a)-(2c). Third, we compare zip codes
 within 10 km of an airport to all other zip code in California in columns (3a)-(3c).

 For the first two sets of comparisons, few comparison tests are significant, roughly at a rate that

 should happen due to randomness. In other words, areas [0,5] km from an airport are comparable
 to areas (5,10] km or (10,20] km.17 On the other hand, the third set of comparisons shows that
 areas within 10 km are not comparable to the rest of the state of California, which includes more
 rural areas. Zip codes closer to airports are on average more urban, more populated, wealthier, and
 have higher housing prices. Therefore, we would caution against interpreting the estimated dose-
 response relationship as representative for the entire population at large. From the standpoint
 of airport externalities, the population close to airports is the population of interest. Moreover,
 much of the air pollution regulation in the US is spatially targeted towards urban areas (i.e. those
 areas with higher degrees of ambient air pollution), and in that case, these estimates may be more
 appropriate for regulatory analysis than a dose response function averaged over individuals in
 both urban and rural locations.

 3. EMPIRICAL METHODOLOGY

 We are estimating the link between ground level airport congestion, local pollution levels, and
 contemporaneous hospitalization rates for major airports in the state of California. To begin, we
 consider the effects of increased levels of airport traffic congestion on local measures of pollution.

 3.1. Aggregate daily taxi time and local pollution levels

 Ambient air pollution is a function of the distance between a point source and the receptor
 location, as well as many other atmospheric variables including, but not limited to, wind speed,
 wind direction, humidity, temperature, and precipitation. To model the effects of increases in
 aggregate airport taxi time on pollution levels, we adopt the following additive linear regression
 model

 Model 1 : pzat =a' Tat+ W zt $ + weekday t + montht + yeart + holiday t + vza + ezat , ( 1 )

 ' v- '

 17. In all, 47% of Californians live in a zip code within 20 km of an airport.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 779

 where pollution pzat in zip code z that is paired with airport a on day t is specified as a function of
 taxi time Tat and a vector of zip code level controls Zzt that include weather controls Wzř.18 Our
 baseline regressions include seventeen weather controls: a quadratic in minimum and maximum
 temperature, precipitation, and wind speed (eight terms) as well as nine terms for wind direction
 that are included in equation (3) below.19 To model this relationship formally, we define wind
 direction by the cosine of the difference between the wind direction and the direction in which
 the zip code is located. The variable will be equal to 1 in the case that the angle in which
 the wind is blowing equals the direction in which the zip code is located, and the variable
 will be equal to zero when they are at a right angle (the difference is 90°). The vector W#
 includes all possible time-varying interactions between distance, wind speed and angle (up and
 downwind) to control for pollution formation not directly influenced by taxi time. We also control

 for temporal variation in pollution by including weekday fixed effects (weekday t), month fixed
 effects ( montht ), and year fixed effects (yeart ) as well holiday fixed effects (> holidayt ) to limit

 the influence of airport congestion outliers.20 In a sensitivity check (available upon request), we
 instead include day fixed effects, i.e., one for each of the 1 ,095 days, and the results remain robust.

 Since there may be time-invariant unobserved determinants of pollution for any given zip code,
 all regressions include zip code fixed effects, vza. The parameter of interest is a', which tells
 us the effect of a 1,000 minute increase in aggregate daily ground congestion on local ambient
 air pollution levels. Increased airplane taxiing leads to an increase in airplane emissions and
 presumably increases in ambient air pollution. Hence, we would expect this coefficient to be
 positive.

 We also estimate models similar to equation (1), where we interact taxi time (or instrumented
 taxi time) with the distance between an airport and the monitor. The idea would be to allow the
 marginal effect of taxi time to differ based on monitors that were closer relative to further from
 the airport. This results in the following equation:

 Model 2: pzat = a'Tat-'-0L2Tatdza-'-7jZtT -'-vza+ezat. (2)

 The additional coefficient is «2- The effect of taxi time on pollution should fade out with distance,

 and we would hence expect this coefficient to be negative. The marginal effect of taxi time in
 model 2 is a' +c¿2dza.

 In a third step we also include interactions with wind direction and wind speed. The intuition
 is that both wind direction and speed transport airport emissions across space. Thus, holding
 speed constant, areas downwind should be relatively more affected by aggregate daily taxi time
 relative to areas upwind. To model this relationship formally, we let vat be the wind speed and czat
 the cosine of the difference between the wind direction and the direction in which the zip code
 is located, which can differ upwind czat > 0 and downwind czat < 0.21 Allowing for all possible

 18. In principle, a zip code z could be paired with more that one airport a. In practice, our baseline model uses zip
 codes whose centroid is within 10 km of an airport. Each zip code is assigned to exactly one airport as none is within
 10 km of two airports.

 1 9. Specifically, our weather controls include the terms corresponding to «3 , «4 and «6 - a ' 2 in equation (3) without

 the interaction with taxi time Tat . Results are robust to different functional forms of weather control variables. Additionally,

 we have estimated models that exclude all weather controls, and the coefficients for our primary pollutant of interest (CO

 see below) are not significantly affected (although the standard errors increase).
 20. We include fixed effects for New Year, Memorial Day, July 4th, Labor Day, Thanksgiving, and Christmas, as

 well as the three days preceding and following the holiday.
 21. The cosine is 0 if the angle is 90°, i.e., the separately estimated effect is different upwind and downwind.
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 time-varying interactions we get:22

 Model 3: pzat = ot' Tat +U2Taídza+oi?>TatczcltI[czat>Q' +<*4TatCzptI[czat<Q'

 ~ł~a5 TatVat H" Gt^TatdzaCZaJ [czat >0] "I" a7 TatdzaCzatI [czat <0]

 ~N*8 TatdzaVat + Oig TatCZatI[czat >0] Vat ~l~ a 10 TatCZatI[czał <0] vat

 1 1 Tatdzaczatl[czat >0] Vat H" Ot 1 2 TatdzaCzatI [czat <0] Vat

 ■VLzt r + vza + eZat . (3)

 The new coefficients are «3 through (*12. The predicted signs of these coefficients are less intuitive.

 While higher wind speeds can clear the air they may also carry greater amounts of the pollutant
 further distances.23 Moreover, downwind areas should have higher pollution levels relative to
 those areas upwind, but aircrafts usually start against the wind. To better interpret the combination
 of all of these interactions, we plot the marginal effects of this particular regression model using

 contour plots in subsequent sections. These contour plots provide strong visual evidence of the
 relationship between daily aggregate airport taxi time, wind speed, wind direction, and local
 pollution levels.
 One potential cause for concern in equations (l)-(3) are any omitted transitory determinants

 of local pollution levels that may also covary with ground congestion. If such omitted variables
 exist, then least squares estimates of the coefficients on taxi time {e.g. a') will be biased. This
 could occur, for example, if weather adversely affected airport activity while also affecting local
 pollution levels. To address this potential source of bias, we need an instrumental variable that
 is correlated with changes in ground congestion at an airport but is unrelated to local levels
 of pollution. A natural instrument comes from delays at major airport hubs outside California,
 which propagate through the air network as connecting flights are delayed, leading to more
 ground congestion at airports in California. The basic logic is that instead of smoothing out
 scheduling over the course of the day, planes now arrive in more distinct blocks of time, leading
 to more waiting/taxiing by those planes taking off as the runway space is shared. Specifically,
 we instrument taxi time at each California airport with taxi time at major airports outside of
 California (Atlanta (ATL), Chicago O'Hare (ORD), and New York John F. Kennedy (JFK)), in
 the following first stage regression:24

 3 12

 Tat - + (4)
 *=l£i=l

 Supplementary Figure Al shows the location of those airports in relation to the California airports.
 We allow the coefficients a ak in equation (4) to vary by airport a by interacting taxi time with
 an airport indicator Ia. These interactions allow for heterogeneity in the impact of delays from
 major airports outside of California on each of the California airports Tat - This is important

 22. The exact dispersion of pollution depends on additional factors like acceleration and height of emissions.
 Benson (1984) presents a formal model of pollution dispersion around roads that includes many variables we do not
 observe. The standard in the literature has hence been to estimate reduced-form relationship with wind direction and

 speed (Batterman et al., 2010).
 23. Recall that we are already controlling for overall wind speed in Wzr, but it has so far not been interacted with

 taxi time or any other weather measure.
 24. These airports were chosen because they are among the largest airports in the country, they serve different

 regions, and they are subject to different weather systems. The results are robust to different airport specifications.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 78 1

 as the impact of delays in Atlanta on California airports is likely to differ across airports. Our
 baseline model utilizes thirty-six instruments (three airports outside California interacted with
 each of the twelve airports in California).25 We use two-way cluster robust standard errors for
 inference, clustering on both zip code and day. The two-way cluster robust variance-covariance
 estimator implicitly adjusts standard errors to properly account for both spatial correlation across

 zip codes on a given day, which are all due to the same network delays, as well as within-zip code
 serial correlation in air pollution over time.26

 The standard conditions for consistent estimation of a ' in the context of our 2SLS estimator are

 that oiak in equation (4) and E[7¿/ -eazt I Zzř, vza] =0. Subsequent sections will show that the
 first condition clearly holds; taxi time at airports on the East Coast leads to large increases in taxi
 time at California airports. The second condition requires that the error term in the instrumental

 variable regression be uncorrected with taxi time at major airports outside of California, 7^. This
 condition would be violated if ground congestion in Chicago somehow co- varied with pollution
 levels in California through reasons unrelated to California airport congestion due to network
 delays.

 While the second condition is not explicitly testable, our data and research design permit
 several indirect tests. First, we show evidence that taxi time in California is predicted by weather
 fluctuations at airports inside and outside of California, but the reverse is not true: weather at the

 major airports in California has no significant effect on taxi time at Eastern airports. Second, we
 show that network delays propagate East to West rather than West to East. Taxi time in Atlanta
 is not higher due to increased taxi time in Los Angeles.27 Further sensitivity checks show that
 using only taxi time before noon at Eastern Airports or directly instrumenting with observed
 weather variables at airports in the Eastern US has little impact on our baseline estimates. In the
 following sections we use the variation in California airport taxi time, and the spatial distribution
 of emissions from an airport, as a predictor of local air pollution measures in order to better
 understand contemporaneous relationships between elevated levels of air pollution and hospital
 admissions.

 3.2. Aggregate daily taxi time , local pollution , and health

 To estimate the pollution-health association in our data we begin by assuming that the relationship
 between health and ambient air pollution can be summarized by the following linear model:

 yzat = ßPzat + n + TļZa + €zat , (5)

 where the dependent variable yzat is our observable measure of health in zip code z when paired
 with airport a on day t.2S The remaining notation is consistent with the previous models, Zzt are
 the same weather and time controls and rjza is a zip code fixed effect.

 25. Model 2 instruments both Tat and Tatdaz with the taxi time outside California Tb and Tktdaz, and thus uses
 seventy-two instruments. Similarly, model 3 instruments all twelve interaction of taxi time Tat at the twelve airports by
 the taxi time at the three largest airports outside California 7*,, which results in 12 x 12 x 3 = 432 instruments.

 26. Standard errors clustering on both airport and day tend to be smaller than those using zip code and day. We
 choose the latter when conducting inference, as they tend to be the more conservative of the two. Results with airport
 and day clustering are available upon request.

 27. This issue is largely addressed by the difference in time zones between our instrumental variable airports and
 California. Airplane traffic in the US generally starts around 6 am in the morning and slows down in the evening. Due
 to the change in time zones, a flight that leaves at LAX in the morning to go to one of the airports does not reach of the
 three airports outside California before noon. On the other hand, a flight that leaves at 6 am on the East Coast will reach
 California by 9 am.

 28. Our analysis implicitly assumes that we can summarize health responses and behaviour at the zip code level
 and that the effect of interest, ß, is stable over time and across airports.

This content downloaded from 
�������������192.73.11.253 on Sun, 16 Feb 2025 03:42:39 UTC������������� 

All use subject to https://about.jstor.org/terms



 782 REVIEW OF ECONOMIC STUDIES

 We focus primarily on respiratory-related hospital admissions as defined by International
 Statistical Classification of Diseases and Related Health Problems ICD-9 (Friedman et al ., 2001;
 Seaton et al., 1995). The dependent variable yzat is the number of admissions to either the
 emergency room or an overnight hospital stay where either the primary or one of the secondary
 diagnosis code fell in one of the following admission categories: asthma, acute respiratory,
 all respiratory, or heart-related diagnoses. These daily zip code counts are scaled by zip code
 population so that the dependent variable represents hospitalization rates per 10 million zip code
 residents. We also estimate models for diagnoses unrelated to pollution: strokes, bone fractures,
 and appendicitis. These outcomes are meant to serve as an important test for the internal validity
 of our research design. Since these health outcomes are unrelated to pollution exposure, they
 should not be significantly related to changes in pollution.

 The coefficient of interest in this model is ß which provides an estimate of the effect of
 a one unit increase in pollution levels on daily hospitalization rates in zip code z and time t.
 Consistent estimation of ß requires E [pzaf£Zat I r¡za' =0. The inclusion of a zip code fixed
 effect implicitly controls for any time invariant determinants of local health that also covary
 with average pollution levels. For example, if relatively disadvantaged households live in more
 polluted areas and have poorer health for reasons unrelated to air pollution, then the zip code
 fixed effect will control for this time-invariant unobserved heterogeneity. However, least squares
 estimation of ß will be biased if there are time- varying influences of both health and pollution
 (e.g. weather), and/or if there is measurement error in pzat. Since we are proxying for pollution
 exposure using the average level of pollution in a zip code on a given day, measurement error might
 be substantial (i.e. people's actual exposure to ambient air pollution might differ significantly
 from that which is reported by a monitor).

 Instrumental variables provide a convenient solution to the bias from omitted variables as
 well as the bias introduced from measurement error in the independent variable.29 We use airport

 ground congestion as an instrumental variable for local pollution levels in the following first stage
 regression equation:

 First Stage (Model 1): pzat= a'f^t+zztr + vza+ezat. (6)

 The first stage regression, equation (6), estimates the degree to which instrumented airport taxi
 time Tat predicts local pollution levels in areas surrounding airports.30 The second stage equation
 uses the predicted values from the first stage to estimate the impact of local pollution variation
 on health. We also estimate versions of equation (6) using models that interact Tat with distance,
 wind speed, and wind direction as in equations (2) and (3), models 2 and 3, respectively.

 Aside from the relationship between pollution and health, we are also explore "reduced form"
 relationships between health outcomes and taxi time. These "reduced form" estimates are directly
 policy relevant; namely, how does aggregate daily taxi time impact the health of nearby residents?
 Understanding the degree to which variation in airport runway congestion directly impacts health

 29. Instrumental variables only solves the bias from measurement error in the independent variable when the
 measurement error is classical, namely mean zero and i.i.d. (Griliches and Hausman, 1986).

 30. We are using predicted aggregate taxi time Tat as an instrumental variable in these regression models. In
 standard OLS regression, inference using generated regressors should be corrected for first-stage sampling variance (e.g.
 Murphy and Topel (2002)). When the generated regressor is used as an instrumental variable this is no longer the case.
 (Wooldridge, 2002, p. 117) presents a weak set of assumptions for which the standard errors of 2SLS regressions using
 generated instruments are unbiased. The key assumption turns on strict exogeneity between the error term in the structural

 model and the covariates used to generate the instrument in the auxiliary regression. See Dahl and Lochner (2012) for a
 similar approach, using a predicted variable as an instrumental variable in a 2SLS setting. These issues are also discussed
 tangentially in Wooldridge (1997) and Wooldridge (2003).
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 783

 has implications for both managing congestion through either demand pricing mechanisms (e.g.
 a congestion tax) or a more efficient runway queuing system.

 3.3. Health outcomes: alternative models

 We supplement our baseline health regressions with several alternative models, exploring model
 specification and model dynamics in more detail. These various regression models are described
 in more detail below.

 3.3.1. Health Outcomes: Non-linearities and Threshold Effects. There is reason to

 suspect that the relationship between pollution and health outcomes is non-linear in the level
 of pollution. Do highly polluted days matter more for predicting negative health outcomes than
 moderately polluted days? We test these hypotheses in two different ways. First, we examine
 heterogeneity in the dose-response relationship between seasons of the year as pollution levels
 of CO and NO2 are higher in the winter months as shown in Supplementary Figure A3. We
 interact all variables in all regressions (first and second stage) with a dummy for summer (April-
 September), thereby allowing the effect to be different for two subsets of the year. Marginal
 changes at higher baseline levels of pollution (i.e. winter) should be larger than marginal changes
 at lower levels of baseline pollution (i.e. summer) if the dose-response function was in fact non-
 linear. There may be other important differences in health outcomes across seasons that could
 explain these seasonal disparities. For example, pollen levels might be higher in the winter as
 most precipitation occurs in the winter and hence flowering occurs in early spring. A body that is
 weakened by the elevated pollen levels might be more (or less) susceptible to pollution shocks.
 The non-linearity we are measuring might be an interaction effect with other substances and not
 directly related to the average pollution level.

 Second, we use the over-identified model 3 to instrument higher order polynomials of average
 daily pollution levels and plot the responding dose-response function. Pollution spreads non-
 linearly in wind direction and wind speed, and our overidentified models allow us to identify
 higher-order polynomials.

 3.3.2. Health outcomes: dynamic effects and forward displacement. By looking at
 the daily response of health outcomes to contemporaneous pollution shocks, we may be neglecting
 important dynamic effects of pollution and health. For example, contemporaneous exposure to
 air pollution may have lagged effects on health, leading people to seek care one or two days
 after the initial pollution episode. Our contemporaneous regression models might miss these
 important lagged impacts. Alternatively, health estimates may be driven by various forms of
 forward displacement. Short-term spikes in pollution might lead individuals on the brink of an
 asthma or heart attack to experience an episode that would have otherwise occurred in the next
 few days anyway. Such behaviour would overestimate the dose-response function as an increase
 in hospitalization rates is followed by a decrease once pollution levels subside. We explore the
 dynamic effects of pollution on health by estimating the following distributed lag model:

 3

 yzat = ^2 ßkPza(t-k) + ^zt H + T}Za + ^zat • (7)
 k= 0

 Instrumented pollution pzat is again obtained using either model 1, 2, or 3 from previous sections.
 In the case of forward displacement, the spike in hospital admissions should be followed by a
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 784 REVIEW OF ECONOMIC STUDIES

 decrease in admissions, and hence J2Ì= oßk where the latter ß comes from the baseline,
 contemporaneous regression. In a sensitivity check (available upon request) we include six lags
 and three leads.

 3.3.3. Health outcomes: heterogeneity and self-selection. Our baseline models rely
 upon the relatively unattractive assumption that the relationship between pollution and health
 is the same for everyone in the population. If there is heterogeneity in a person's relative
 susceptibility to pollution (or in how people respond to adverse health outcomes), then people
 may sort themselves into locations based on these observed or unobserved differences. This
 heterogeneity may manifest itself through access to medical care or through biological differences
 in the pollution-health relationship among certain segments of the population. Previous research
 (e.g. Chay and Greenstone (2003)) and results presented in subsequent sections of this article
 suggest that health effects differ by observable characteristics of the population. If people sort
 themselves based on this underlying heterogeneity, then our estimates may identify the average
 effect of pollution on health for a non-random subpopulation in the data (Willis and Rosen, 1979;
 Garen, 1984; Wooldridge, 1997; Heckman and Vytlačil, 1998).

 We address these issues in various ways. In a sensitivity check, we limit our estimates to people

 65 years and older who have guaranteed health insurance in the form of Medicare. Thus, any
 heterogeneity in hospitalization should no longer be driven by access to health insurance. Another
 concern is that the severity of the particular health shock determines whether a person will seek
 emergency care. We therefore also include heart problems as a category, which are severe enough
 that patients will seek medical help independent of their insurance or financial situation. There
 may also exist significant heterogeneity based on unobservable characteristics. Previous research
 suggests that individuals engage in avoidance behaviour on days where pollution is predicted to
 be high (Neidell, 2009), which implies there is likely heterogeneity in ß as well as correlation
 between ß and pzat. In a previous version of this article, we developed a framework to test whether
 selection on unobserved heterogeneity leads to bias in our estimates (Schlenker and Walker,
 2011), but did not find this to be the case. The lack of self-selection bias may be in part driven
 by our research design, where airport-driven pollution is relatively stochastic and unforecastable,
 making it difficult to select on.

 3.3.4. Health outcomes: poisson model. Since our dependent variable is measured as
 hospital visits in a given zip code day (before we convert it to a sickness rate), we also estimate
 regression models that account for the non-negative and discrete nature of the data. Specifically,
 we use a conditional (fixed effects) quasi-maximum likelihood Poisson model (Hausman et al .,
 1984; Wooldridge, 1999).31 To account for the endogeneity of pollution exposure, we generalize
 the standard conditional Poisson model into an instrumental variables setting. To do this, we
 adopt a control-function approach to the conditional Poisson model (see e.g. Wooldridge (1997)
 and Wooldridge (2002)), whereby we include the residual (e^¡) from our first-stage regression
 (i.e. the effect of taxi time on pollution) in our regression equation of interest:

 SZat I Pzat <> Tat > Z zt , T}Za] = Iza exP (ßPzat "I" Y' ezat ~ł" Zzt FI) , (8)

 where szat are sickness counts (no longer rates), pzat is the observed pollution level in a county,
 and e^t is the residual from one of the first-stage regression of pollution on taxi time using model

 3 1 . The Poisson model is generally preferred to alternative count data models, such as the negative binomial model,
 because the Poisson model is more robust to distributional misspecification provided that the conditional mean is specified

 correctly (Cameron and Trivedi, 1998; Wooldridge, 2002).
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 1, 2, or 3. The fixed effect model allows the marginal effect of pollution to differ by zip code. The

 model accounts for the fact that zip codes have different number of residents through the fixed
 effects f)za.

 While including the first-stage error purges the estimates of the various selection biases
 outlined above (Wooldridge, 2002, p. 663), the standard errors need to be corrected for the
 variation coming from the first stage estimation. To account for the first-stage sampling error in
 the eZat , we bootstrap the regression using a block-bootstrap procedure where we randomly draw
 the entire history of a zip code with replacement.

 4. EMPIRICAL RESULTS

 4. 1 . Aggregate daily taxi time and local pollution levels

 We start by examining the effect of airport congestion on pollution levels in surrounding areas.
 Table A5 gives the first-stage results when taxi time is instrumented using runway congestion at
 the three major airports outside of California. There is one noteworthy result: For major hubs in
 California, an increase in taxi time at East Coast airports increases taxi time as delays propagate
 through the system. On the other hand, the sign reverses for smaller airports: an increase in
 taxi time at East Coast airports decreases local taxi time. As Pyrgiotisa et al. (2013) point out,
 propagation through the system can have "counter-intuitive results". If planes bunch up at one
 hub, the effects on close-by commuter airports can be the opposite as the connectors now arrive
 more evenly spread, or because flights are canceled.32

 Table 1 presents regression estimates using the specifications outlined in equations (1), (2), and
 (3), presented in columns a, b, and c, respectively. Each column represents a different regression,
 where the dependent variable in the columns (la)-(lc) is the daily mean CO measured in parts
 per billion (ppb). Columns (2a)-(2c) report regression estimates for daily mean NO2, while
 columns (3a)-(3c) report estimates for ozone O3.33 Taxi time is reported in thousands so that the
 coefficients in Table 1 report the marginal effect of a 1 ,000 minute increase in taxi time on local
 pollution levels. All regressions report robust standard errors, clustering on both zip code and
 day.34

 Column (la) suggests that a 1,000 minute increase in taxi time increases ambient CO
 concentrations in zip codes within 10 km of an airport by 45 ppb (an 8% increase relative to
 the mean, or 12% of the day-to-day standard deviation). Since the standard deviation of taxi time
 at LAX in Supplementary Table Al is 1,852, a one-standard deviation increase in taxi time leads

 32. For example, flights out of Santa Barbara frequently get canceled if Los Angeles is backed up to reduce the
 queue of incoming airplanes into Los Angeles.

 33. OLS estimates are presented in Supplementary Table A6.
 34. The heavily over-identified models from equation (3) impose significant computational burdens when estimating

 IV models containing two-way, cluster-robust standard errors. To circumvent this issue, we report the results from running

 the first stage and then using the predicted values in the second stage without accounting for the fact that we are using

 generated regressors in the second stage. Plugging in the predicted regressors is computationally much easier because
 we do not cluster all the first-stage regressions, instead we simply recover the point estimates from each regression.
 Two-way cluster robust routines require estimating three variance-covariance matrices, one corresponding to the first
 cluster group, one corresponding to the second cluster group, and one corresponding to the two-way expansion of the two
 groups. Since we have more than a 100 instruments in model 3(12 variables times 12 airports times 3 east coast airports
 = 432 first stage regressions), this imposes a significant computational burden. To understand the likely magnitude of
 this bias, Supplementary Table A7 reports two sets of standard errors for equations (1) and (2): (i) the IV results; and
 (ii) running the first stage and using the predicted values in the second stage with two-way clustered errors but no other
 adjustments. The results suggest that the standard errors from the IV are quite similar to those from manual 2SLS.
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 TABLE 1

 Pollution regressed on instrumented taxi time

 CO pollution NO2 pollution O3 pollution

 Variable (la) (lb) (lc) (2a) (2b) (2c) (3a) (3b) (3c)

 Taxi Time 44.78*** 56.26*** 52.56*** 0.57*** 0.67*** 0.67*** -0.00 0.08 0.16

 (5.04) (9.48) (10.49) (0.09) (0.15) (0.22) (0.09) (0.11) (0.20)
 Taxi X Distance -1.62 -2.13 -0.01 -0.02 -0.01 -0.03

 (1.22) (1.37) (0.02) (0.03) (0.01) (0.02)
 Taxi X Angle« 13.16* 0.31 -0.50***

 (7.78) (0.22) (0.18)
 Taxi X Angles 5.48 0.05 0.05

 (6.97) (0.18) (0.12)
 Taxi X Speed -2.05 -0.08* 0.04

 (1.89) (0.04) (0.05)
 Taxi X Distance x Angle« -0.60 -0.02 0.05**

 (1.10) (0.03) (0.02)
 Taxi x Distance x Angle¿ 0.16 -0.01 -0.01

 (0.89) (0.03) (0.02)
 Taxi x Distance x Speed 0.55** 0.01* -0.00

 (0.25) (0.01) (0.01)
 Taxi x Angles x Speed 1.70 0.10* -0.07

 (2.66) (0.05) (0.06)
 Taxi x Angle« x Speed -10.41*** -0.19** 0.26***

 (3.74) (0.10) (0.09)
 Taxi x Dist. x Angle« x Speed 1 .50*** 0.03** -0.03**

 (0.50) (0.01) (0.01)
 Taxi x Dist. x Angles x Speed -0.63* -0.01 0.01

 (0.35) (0.01) (0.01)

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip Codes 164 164 164 164 164 164 164 164 164
 Days 1,095 1,095 1,095 1,095 1,095 1,095 1,095 1,095 1,095
 F-stat(joint sig.) 78.48 42.24 14.11 39.67 19.80 4.88 0.00 0.76 1.26
 p-value (joint sig.) 1.33e-15 1.66e-15 7.89e-20 2.68e-09 2.00e-08 7.48e-07 .9773 .4705 .2452

 Notes: Table regresses zip code level pollution measures on airport congestion (total taxi time in 1,000 min) in 2005-7.
 Taxi time at the local airport is instrumented with the taxi time at three major airports in the Eastern US. All regressions
 include weather controls (quadratic in minimum and maximum temperature, precipitation and wind speed as well as
 controls for wind direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed
 effects. Regressions are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day.
 Significance levels are indicated by *** 1%, ** 5%, * 10%.

 to 0.23 standard deviation increase in CO pollution of the zip codes around LAX. Column (lb)
 of Table 1 includes an interaction of taxi time with distance to the airport. The non-interacted
 taxi time coefficient now reports the effect of airplane idling on pollution levels directly at the
 airport. The point estimate implies that a one standard deviation increase in taxi time at LAX
 leads to 0.28 standard deviation increase in CO levels in areas adjacent to LAX. The interaction
 term shows how this effect decays linearly with distance.

 Finally, column (lc) reports the coefficients from the estimated version of equation (3) that
 interacts taxi time with wind speed and wind angle from an airport. The F-test for the joint
 significance of these coefficients is given in the last two rows of the table and shows that they
 are highly significant. Since individual coefficients are difficult to interpret, we plot the marginal
 effect of an extra 1,000 minutes of taxi time for four wind speeds in the first row of Figure 3.
 Wind speeds increase from left to right. The colour indicates the marginal impact ranging from
 low (blue) to high (red). If a zip code is directly downwind, it is on the positive jc-axis, while
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 787

 areas upwind are on the negative jc-axis.35 Figure 3 makes clear that there is significant spatial
 heterogeneity in the marginal effect of taxi time, and this heterogeneity depends on distance from
 an airport, wind speed, and wind direction. As such, equation (3) (i.e. model 3) is best able to
 capture this heterogeneity.

 Columns (2a)-(2c) of Table 1 give estimates pertaining to the effect of taxi time on NO2
 levels. The results are comparable to those from CO, although the linear decrease in distance
 from the airport is not significant. A one standard deviation increase in taxi time at LAX increases

 NO2 concentrations by roughly 1 ppb, or 10% of the day-to-day standard deviation. The second
 row of Figure 3 shows again that downwind areas are much more impacted than upwind areas.
 Both Table 1 and Figure 3 show that the relative impact of NO2 is different than CO: the range
 of marginal impacts for CO in Figure 3 is between -71% and +43% relative to the average
 impact from column (la) in Table 1. In contrast, the marginal effect of taxi time on NO2 varies
 between -60% and +33% relative to the average effect from column (2a) of Table 1. The spatial
 pattern is also somewhat different. In subsequent sections, we use these relative differences in
 pollutant dispersion to jointly estimate the effect of both CO and NO2. Recall from Section 1 that
 CO emissions are higher during low power operation, while NO2 is higher during high power
 operation. Larger wind speeds require more thrust during takeoff and hence change the mix of
 CO and NO2 emissions.

 Finally, columns (3a)-(3c) replicate the same analysis for ozone (O3), a pollutant that is not
 directly emitted from airplanes.36 The results in Table 1 suggest that airport taxi time has little
 significant impact on ozone levels, although some of the interaction terms are significant, the joint
 F-test is never significant. In the remainder of the analysis we focus on CO and NO2, the two
 criteria air pollutants for which airplanes are large emitters, while acknowledging that we may
 be picking up the health effects of other pollutants that are correlated with airplane emissions.

 Our baseline pollution estimates presented above come from models in which airport taxi
 time is instrumented with taxi time at large airports outside of California. We instrument taxi
 time because delays and runway congestion might be correlated with local weather, which in
 turn might impact pollution levels. In addition, there is likely measurement error in our taxi time
 variable as it only includes domestic, commercial flight activity. While we control for weather in
 our regressions, there might be unobserved weather (or other) variables that jointly impact both
 pollution and taxi time. Supplementary Table A6 replicates the baseline IV analysis of Table 1
 using local taxi time at California airports, which is not instrumented. The estimated effect is
 generally half as big for CO and NO2. The smaller OLS estimates are consistent with adverse
 weather (e.g. precipitation) causing both airport delays and at the same time reducing ambient
 air pollution. Alternatively, these results could be driven by the well-known attenuation bias
 stemming from measurement error in fixed effects models. In the remainder of the article, we
 rely on instrumented taxi time stemming from network delays.

 35. Areas downwind are more affected by taxi time than areas upwind. For the very highest wind speeds, the largest

 marginal impact of taxi time can be found just upwind from the centroid of the airport (although the average marginal
 impact remains highest downwind). This is possibly due to the fact that airplanes start against the wind and mostly line up

 in the opposite direction, i.e., the direction from which the wind is blowing. Local wind is highly predictive of congestion.

 When local wind is strong and the average local taxi time is high and the queue is long, an additional unit of congestion
 due to network delays will hence "add" an additional plane that is idling upwind from the airport centroid. For example,
 the four runways of LAX are between 2.7 km and 3.7 km long, which is significant as we are examining monitors within
 10 km of the airport centroid.

 36. Ozone is formed through a complicated chemical reaction between both nitrogen dioxides and VOCs in the
 presence of sunlight. As Auffhammer and Kellogg (2011) have shown, increasing VOC in VOC-rich environments can
 have no effect on ozone or slightly decrease it, while it will increase ozone if VOCs are limited compared to NO*. This
 poses a challenge for the monotonicity assumption behind IV regressions.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 789

 We use taxi time at three major airports in our baseline regressions: Atlanta (ATL), Chicago
 (ORD), and New York (JFK). Supplementary Table A7 presents first-stage F-statistics if we
 instrument taxi time at California on up to four airports outside of California. Recall that we
 allow the coefficients to vary by airport, as network congestion will have different absolute
 effects on California airports. Irrespective of whether we use 1, 2, 3, or 4 airports outside of
 California, the F-statistic is well above 10. In our baseline model, we use three airports that cover
 weather patterns in three regions of the Eastern US: Southeast (Atlanta), Midwest (Chicago),
 and Northeast (New York JFK), and the first-stage F-stat is 50. The fourth large airport outside
 of California that we include in columns (d) is Dallas/Fort Worth (DFW). While results are not

 particularly sensitive to including DFW, we exclude it from our baseline specifications as it is
 significantly closer to California airports and thus may be more endogenous than the other three
 airports (i.e. Dallas/Fort Worth may be delayed because California airports are delayed).

 Reverse causality is less of a concern for the other three airports: a flight that leaves a California

 airport at 6 am will not reach Atlanta, Chicago, or New York until roughly noon due to the change
 in time zones. Supplementary Table A8 tests for reverse causality directly by regressing taxi time
 at an airport on eight weather measures we generally include as controls: a quadratic in minimum
 and maximum temperature, precipitation, as well as wind speed.37 The column heading gives
 the airport at which the congestion is measured while the row indicates the airport at which the
 weather variables are measured.38 The table reports /7-values of a hypothesis test pertaining to
 the joint significance of the weather variables. The diagonal is highly significant as local weather
 measures impact airport taxi time. While weather at the eastern airports (ATL, ORD, or JFK)
 sometimes impacts taxi time at the two largest airports in California (LAX and SFO), the reverse
 is not true. This is consistent with weather at Eastern airports causing local network delays that
 propagate through the airspace and impact taxi time in California. The reverse direction does not
 hold. California airports do not affect East Coast airports on the same day. This result is not simply
 an arteifact of there being less weather variation in California, as weather at LAX significantly
 impacts taxi time at SFO.

 We have also run two sensitivity checks to further rule out endogeneity through reverse
 causality, the results of which are reported at the end of the subsequent section on health effects
 and shown in Supplementary Table A 13. First, we only utilize the combined taxi time between
 5 am and noon at the three major Eastern airports to rule out California feedback effects. This
 reduces the F-stat in model 1 from 50 to 35.5, but the results remain similar to baseline estimates.

 Second, instead of using taxi time at the three major Eastern airports, we use the eight weather
 variables at each of these airports. Since this effectively increases the number of instruments
 by a factor of eight, we no longer estimate model 3 (which had 432 instruments to begin with).
 The F-statistic for the weather-instrumented regression is 5,436. Again, results remain similar
 to our baseline estimates but the standard errors in the second-stage increase. Going forward we
 instrument using the overall daily taxi time, as it has a higher F-statistic than focusing only on
 the mornings yet is more tractable than using weather measures, which would result in 3,456
 instruments in model 3.

 We conduct two last robustness checks. First, since the variation in pollution due to delays
 outside of California should be uncorrelated with weather in California, we have estimated models

 (not reported) that exclude California weather controls altogether. Reassuringly, our baseline

 37. Weather measures in our baseline regression also include the direction in which the wind is blowing relative to
 the direction in which the zip code is located. Since the dependent variable in the current regression is at the airport level

 and not the zip code level, these variables are not well defined and hence dropped.
 38. If we pair airport taxi time with weather from another airport, we also include the local weather measure as

 control. The local weather measures are not included in the joint test of significance.
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 790 REVIEW OF ECONOMIC STUDIES

 estimates for the most important pollutant (CO, see below) are similar whether we include or
 exclude California weather controls, but the error terms increase. Second, there may of course
 be some omitted variable that affects congestion outside of California and health outcomes in
 California. This hypothesis is not directly testable, but we have estimated models (available upon
 request) which include taxi time at other CA airports as a control variable in our baseline reduced
 form regressions, and the results remain very similar.

 To put the magnitude of these effects into perspective, it is useful to consider the current
 ambient air standards in place for CO as regulated by the EPA under the Clean Air Act. The
 current one hour carbon monoxide standard specifies that pollution may not exceed 35 ppm (or
 35,000 ppb) more than once per year. California has their own CO standard which is 20 ppm. A
 one standard deviation increase in LAX airplane idling (1,852 minutes) translates into an 83 ppb
 increase (44.78 x 1 .852) in carbon monoxide levels for areas within 10 km of LAX using estimates
 from column (la) of Table 1. Adding this number to the average daily maximum CO level at zip
 codes from Panel A of Supplementary Table A2 (1234 ppb), the estimated increase in pollution
 concentrations is far below the current EPA standard. Similarly, for NO2, the current EPA 1-hour

 standard is 100 ppb. Using estimates from column (2a) of Table 1, a standard deviation increase
 in LAX taxi time would lead to a 1 ppb increase in NO2 levels. Evaluated relative to the average
 daily maximum NO2 levels of 35.5 ppb, these are again well below the ambient criteria standard.
 Note that the maximum of the maximum daily NO2 levels is above the standard as some areas
 are out of attainment. The remaining sections estimate the social costs of these congestion-related
 increases in ambient air concentrations by focusing on heath outcomes of the populations most
 affected by these emissions.

 4.2. Effects of taxi time on local measures of health

 We begin by investigating the "reduced form" health effects of airports, relating aggregate daily
 taxi time to local measures of health. Namely, how does variation in airport congestion predict
 local health outcomes? Table 2 presents the results from a regression relating daily measures of
 airport taxi time to local hospital admissions for the overall population as well as two susceptible
 subgroups: individuals below 5 years of age and individuals aged 65 years and above. The
 dependent variable is measured as the daily sum of hospital and emergency room visits for
 persons living in a particular zip code scaled by the population (per 10 million individuals) in that
 particular zip code. The regressions are weighted by zip code population size, and taxi time is
 instrumented using taxi time at three major airports in the East. The estimated coefficient on the
 taxi time variable corresponds to the increased rate of hospitalizations per 10 million individuals
 in a zip code for an extra 1,000 minutes of taxi time. Using various diagnosis codes, we examine
 the impact of taxi time on asthma, respiratory, and heart-related admissions separately. As a
 falsification exercise, we also estimate the incidence of taxi time on strokes, bone fractures, and

 appendicitis rates. The reported standard errors are clustered on both zip code and day.
 For the overall population (Panel A), all respiratory sickness rates as well as heart problems

 are significantly impacted by taxi time, while the placebo effects for stroke, bone fractures, and
 appendicitis are not significantly affected. Results become larger in magnitude for the at-risk
 age groups. For the population 65 years and above, the incidence of stroke and bone fractures is
 marginally significant at the 10% level. This may be do to statistical chance or may be explained
 by the fact that senior citizens may also be more susceptible to sicknesses that covary with
 one another (e.g. a respiratory problem might make them fall and break a bone). Additionally,
 Medicare provides doctors implicit incentives to add additional diagnosis codes to receive higher
 reimbursement rates. Consistent with this explanation, models for which the dependent variable
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 79 1

 TABLE 2

 Sickness rates regressed on instrumented taxi time

 Acute All All Bone Appen-
 Asthma Respiratory Respiratory Heart Stroke fractures dicitis

 Panel A: all ages

 Taxi Time 13.84*** 24.77*** 33.89*** 19.35*** 2.55 -1.33 0.26

 (2.72) (7.73) (9.82) (5.24) (1.71) (2.87) (0.68)

 Panel B: ages below 5 years

 Taxi Time 24.46** 84.28 116.12* 6.63* 0.80 2.16 -0.29

 (11.21) (51.35) (62.46) (3.47) (0.94) (5.84) (1.38)

 Panel C: age 65 years and above

 Taxi Time 36.89*** 63.80*** 100.53*** 156.54*** 22.87* 19.13* 0.75

 (11.39) (16.43) (25.25) (36.98) (12.95) (9.95) (1.21)

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip codes 164 164 164 164 164 164 164
 Days 1,095 1,095 1,095 1,095 1,095 1,095 1,095

 Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million
 people) on daily congestion (taxi time in 1000 min) that is caused by network delays (taxi time at three major airports in the
 Eastern US). All regressions include weather controls (quadratic in minimum and maximum temperature, precipitation
 and wind speed as well as controls for wind direction), temporal controls (year, month, weekday, and holiday fixed
 effects), and zip code fixed effects. Regressions are weighted by the total population in a zip code. Errors are two-way
 clustered by zip code and day. Significance levels are indicated by *** 1%, ** 5%, * 10%.

 is measured only using the primary diagnosis code, the placebo effects for 65 years and older are
 no longer significant.

 4.3. Hospital admissions and instrumented pollution exposure

 Results thus far have shown that aggregate airplane taxi time generates variation in pollution
 levels of nearby communities. We exploit this variation to examine the relationship between
 pollution and health explicitly. Table 3 summarizes regression results for various pollutants and
 illnesses using a variety of traditional econometric specifications. Each entry corresponds to a
 different regression, where the dependent variable is measured as hospital admission rates, and
 the independent variable is the daily mean ambient pollution concentration in a particular zip
 code. As before, regression estimates are weighted by zip code population and standard errors
 are clustered on both zip code and day.39
 The first row within each panel presents estimates from a pooled OLS version of equation (5)

 without any controls Zzt, which suggests that increased ambient air concentrations lead to
 adverse health outcomes for respiratory and heart problems. Since various pollutants are often
 correlated with one another, these estimates should be interpreted with caution, as the pollutant of
 interest will proxy for other correlated air pollutants. Each consecutive row adds more controls.
 The second row uses time controls (year, month, weekday, and holiday fixed effects), and the
 third row additionally adds weather controls (quadratic in minimum and maximum temperature,
 precipitation and wind speed as well as controls for wind direction). To control for unobserved,

 39. Unweighted regressions yield similar results and are available upon request.
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 TABLE 3

 Sickness rates regressed on pollution

 Acute All All Bone Appen-
 Asthma Respiratory Respiratory Heart Stroke fractures dicitis

 Panel A: CO pollution - all ages

 No controls 0.070*** 0.265*** 0.353*** 0.035 -0.002 -0.022*** -0.001

 (0.017) (0.041) (0.053) (0.028) (0.006) (0.007) (0.001)
 Time controls 0.030 0.058 0.070 -0.022 -0.014* -0.008 0.001

 (0.024) (0.057) (0.075) (0.040) (0.008) (0.010) (0.001)
 Time + Weather 0.056** 0.047 0.071 0.002 -0.005 -0.012 -0.001

 (0.028) (0.068) (0.091) (0.052) (0.010) (0.012) (0.001)
 Time + Weather + Zip Code FE 0.011 0.049*** 0.077*** 0.027*** -0.001 -0.007* 0.002

 (0.007) (0.018) (0.022) (0.008) (0.003) (0.004) (0.001)

 Panel B: NO2 pollution - all ages

 No controls 3.1*** 10.7*** 14.6*** 4.3*** 0.6*** -0.3 0.1**

 (0.5) (1.3) (1.7) (1.1) (0.2) (0.2) (0.0)
 Time controls 1.7** 6.0*** 7.9*** 1.0 -0.1 0.6* 0.1**

 (0.7) (1.5) (2.1) (1.4) (0.3) (0.3) (0.0)
 Time + Weather 4.2*** 8.3*** 11.5*** 3.0 0.8* 0.7 -0.0

 (1.0) (2.6) (3.6) (2.4) (0.5) (0.5) (0.1)
 Time + Weather + Zip code FE 0.1 1.2* 2.5*** 0.9*** 0.1 -0.0 0.1*

 (0.2) (0.6) (0.8) (0.3) (0.1) (0.2) (0.0)

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip codes 164 164 164 164 164 164 164
 Days 1,095 1,095 1,095 1,095 1,095 1,095 1,095

 Notes: Table regresses zip code level sickness rates (based on primary and secondary diagnosis codes) on daily pollution
 (ppb) in 2005-7. Each entry is a separate regression. Columns use sickness rates (counts per 10 million people) for
 different diseases, while rows use different controls. The first specification (row) in each panel has no controls, while
 the second adds time controls (year, month, weekday as well as holiday fixed effects), the third adds weather controls
 (quadratic in minimum and maximum temperature, precipitation and wind speed as well as controls for wind direction),
 and the fourth adds zip code fixed effects. All regressions are weighted by the total population in a zip code. Errors are
 two-way clustered by zip code and day. Significance levels are indicated by *** 1%, ** 5%, * 10%.

 time-invariant determinants of health, the fourth row of each panel in Table 3 reports regression
 estimates from a model using zip code fixed effects. The model is identified by examining how
 within zip code changes in pollution are related to hospitalization rates of that particular zip
 code. Again, pollution is often strongly correlated with health, although the estimates in the
 fourth row are usually smaller than those in the first three. These smaller point estimates are
 consistent with time-invariant omitted variables introducing bias into the estimates from rows
 one through three. Alternatively, classical measurement error in the pollution variable may lead
 to significant attenuation bias in fixed effects models (Griliches and Hausman, 1986), and this
 may be responsible for the smaller point estimates in the last row.
 Aside from attenuation bias, fixed effects models may also suffer from biases introduced

 by any unobserved, time- varying determinants of both pollution and health (e.g. weather). To
 explore this issue further, Table 4 presents instrumental variable estimates of the pollution-health
 relationship, using instrumented aggregate airport taxi time as an instrumental variable for daily
 mean pollution. Table 4 presents results for both the overall population in Panel A as well as
 children below 5 year in Panel B and people aged 65 years and above in Panel C.40 The three

 40. Results for the two remaining groups: children ages 5-19 years and adults ages 19-64 years are given in
 Supplementary Table A9. Children between 5 and 19 years of age show no sensitivity to pollution shocks. Conversely,
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 TABLE 4

 Sickness rates regressed on instrumented pollution

 Acute All Heart Bone Appen-
 Asthma respiratory respiratory problems Stroke fractures dicitis

 Panel A: all ages

 Modell: CO 0.311*** 0.556*** 0.761*** 0.434*** 0.057 -0.030 0.006

 (0.065) (0.162) (0.207) (0.134) (0.039) (0.063) (0.015)
 Model 2: CO 0.307*** 0.550*** 0.755*** 0.419*** 0.050 -0.030 0.003

 (0.062) (0.163) (0.210) (0.128) (0.038) (0.064) (0.015)
 Model 3: CO 0.194*** 0.396*** 0.515*** 0.226*** 0.020 -0.039 0.002

 (0.047) (0.125) (0.165) (0.079) (0.030) (0.040) (0.011)
 Model 1:N02 24.5*** 43.8*** 59.9*** 34.2*** 4.5 -2.4 0.5

 (6.2) (16.2) (20.5) (10.5) (3.1) (5.2) (1.2)
 Model 2: N02 24.3*** 43.6*** 59.8*** 33.5*** 4.2 -2.4 0.3

 (6.1) (16.3) (20.8) (10.4) (3.1) (5.2) (1.2)
 Model 3: N02 12.4*** 18.9* 24.2* 17.1** 0.7 -1.0 0.3

 (4.0) (11.0) (14.2) (7.1) (2.2) (3.0) (0.9)

 Panel B: ages below 5 years

 Modell: CO 0.565** 1.948* 2.683** 0.153* 0.018 0.050 -0.007

 (0.240) (1.124) (1.353) (0.081) (0.021) (0.136) (0.032)
 Model 2: CO 0.579** 1.930* 2.624* 0.127 0.020 0.064 -0.013

 (0.235) (1.111) (1.356) (0.078) (0.023) (0.132) (0.034)
 Model 3: CO 0.669*** 2.166*** 2.493** 0.075 0.023 -0.012 -0.009

 (0.170) (0.796) (0.980) (0.057) (0.015) (0.122) (0.022)
 Model 1:N02 42.2** 145.3 200.2* 11.4* 1.4 3.7 -0.5

 (20.5) (95.2) (117.3) (6.4) (1.6) (10.0) (2.4)
 Model 2: N02 43.2** 144.1 195.9* 9.5 1.5 4.8 -0.9

 (20.2) (94.3) (117.6) (6.2) (1.7) (9.7) (2.5)
 Model 3: N02 43.6*** 122.2* 140.8* 4.5 2.9** 3.7 0.6

 (14.9) (67.7) (82.4) (4.6) (1.3) (9.3) (2.0)

 Panel C: ages 65 years and older

 Modell: CO 0.849*** 1.469*** 2.314*** 3.604*** 0.526* 0.440* 0.017

 (0.312) (0.440) (0.642) (1.001) (0.297) (0.242) (0.028)
 Model 2: CO 0.815*** 1.413*** 2.275*** 3.529*** 0.502* 0.409* 0.016

 (0.288) (0.422) (0.637) (0.971) (0.302) (0.241) (0.028)
 Model 3: CO 0.493** 0.696** 1.424*** 1.937*** 0.198 0.187 -0.025

 (0.204) (0.309) (0.511) (0.620) (0.249) (0.161) (0.026)
 Model 1:N02 66.5*** 114.9*** 181.1*** 282.0*** 41.2* 34.5* 1.4

 (22.8) (34.3) (52.3) (76.1) (24.2) (18.2) (2.2)
 Model 2: N02 66.5*** 115.1*** 181.4*** 282.2*** 41.2* 34.5* 1.4

 (22.8) (34.3) (52.3) (76.2) (24.3) (18.2) (2.2)
 Model 3: N02 35.3** 38.9 75.8* 131.6*** 3.6 12.2 -0.8

 (14.2) (24.6) (41.3) (47.8) (16.5) (12.0) (1.6)

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip codes 164 164 164 164 164 164 164
 Days 1095 1,095 1,095 1,095 1,095 1,095 1,095

 Notes: Table regresses zip code level sickness rates (counts for primary and secondary diagnosis codes per 10 million
 people) on daily instrumented pollution levels (ppb) in 2005-7. Each entry is a separate regression. Pollution is
 instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports in
 the Eastern US). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding an
 airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds interactions with
 wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in minimum
 and maximum temperature, precipitation and wind speed as well as controls for wind direction), temporal controls (year,
 month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the total population
 in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by *** 1%, ** 5%,
 * 10%.
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 794 REVIEW OF ECONOMIC STUDIES

 rows (labeled model 1-3) use (1) taxi time, (2) taxi time interacted with distance, and (3) taxi time

 interacted with distance, wind speed, and wind direction, respectively. These are the specifications

 outlined in equations (1), (2), and (3) above.
 The estimates in Table 4 are usually an order of magnitude larger than the OLS, fixed-

 effects estimates from Table 3. To put the magnitudes into perspective: the average asthma
 sickness rate for the overall population is 339 per 10 million inhabitants (Panel Al and A2
 of Supplementary Table A3). The asthma coefficient for CO (model 3) in Table 4 implies that a
 one standard deviation increase in CO pollution leads to an additional 0.194 x 368 = 71 asthma
 attacks per 10 million people,41 which is 21% of the daily mean.42 This suggests that fluctuations
 in air pollution are a major cause of asthma related illnesses. For heart-related problems, the
 relative magnitude is 18% of the daily mean. It is important to note that the estimated CO effect
 may not necessarily be coming from CO itself but from some other pollutant that is co-emitted
 in jet exhaust that we do not observe (e.g. a toxic VOC or particulate matter that is emitted
 due to incomplete combustion). In addition to measurement error or avoidance behaviour, the
 fact that variation in CO comes from airplanes may be a further explanation for the discrepancy
 between OLS and IV estimates. However, the Federal Aviation Administration (2005) suggests
 that aircraft engines produce the same types of emissions as automobiles, which are the largest
 single source of carbon monoxide emissions in the US.

 Models 2 and 3 in Table 4 estimate over-identified models instrumenting pollution with both
 taxi time and taxi time interactions. While estimates in model 2 are similar to those from model 1,

 estimates from model 3 are generally smaller. The reason for the difference in magnitudes between

 models 2 and 3 is not entirely clear, but we believe there are two competing explanations. The
 first explanation stems from the inability of models 1 and 2 to capture the spatial heterogeneity in
 the effect of taxi time. Recall that model 3 uses distance as well as wind direction and wind speed.

 Marginal impacts of airport congestion vary greatly across space as shown in Figure 3, much
 more than in a model that only includes distance. Failing to model this heterogeneity in pollution
 exposure may lead to inaccurate scaling of the reduced form relationships in our IV/2SLS setting.
 A competing explanation as to why model 3 estimates differ from models 1 and 2 stems from
 measurement error in the location of exposure. While we know the exact location of each pollution

 monitor and hence can correctly model the pollution surface in space, we only know the zip code
 of a person's residence and the hospital, not the exact location where they fell ill. As a result, all
 models will pair sickness counts with incorrect pollution measures if they are not close to the
 centroid of the zip code when they fell ill, but this might be aggravated by model 3 that explicitly
 uses the spatial distribution of the pollution surface. Supplementary Table AIO investigates this
 latter hypothesis by looking at various subsets of the data. Panel A presents our baseline results,
 Panel B assigns pollution data based on the zip code of the residence, while Panel C assigns
 pollution based on the hospital zip code. A few results are noteworthy: first, the estimates using
 model specification 3 are very close to the estimates using specification 1 and 2 in Panel B 1 where
 we only count sicknesses if both the zip code of the residence and hospital are within 10 km of the
 same airport. On the other hand, model specification 3 diverges in Panel B2 where the hospital
 zip code is outside the 10 km radius from airports, perhaps because we measure exposure less

 the estimated dose-response for adults are roughly comparable to the baseline estimates, which is not surprising since
 they are the largest share of the overall population.

 41 . Panel A of Supplementary Table A2 shows that the standard deviation for CO is 368.
 42. This back-of-the-envelope calculation increases the pollution level in each zip code by the average 'overall'

 standard deviation of pollution fluctuations. Moreover, the average sickness rate is not population weighted. In subsequent

 sections, we increase pollution in each zip code by the zip code specific standard deviation in pollution fluctuations and
 calculate the population- weighted average sickness count. The relative impact decreases to 17% of the daily mean under
 the linear probability model and 19% under a Poisson count model.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 795

 accurately (e.g. the person might have been at work). In addition, panel B3 shows that there are
 no significant results where the hospital is within 10 km of another airport, suggesting that we
 are not simply picking up a daily pattern that is common to all airports.43 As a secondary bit of
 evidence, model 3 in Panel B of our baseline Table 4 gives comparable point estimates to model
 1 and 2 for children under the age of 5 years, whom are more likely to be at home or in a close-by
 day care. Due to these competing explanations for the differences across models, we continue
 to present all model estimates whenever possible, allowing the reader to choose their preferred
 estimate.

 There are two additional explanations for the discrepancies between models 3 and 1 and 2
 which we find less salient. First, there is a well-known bias of 2SLS estimators when instruments

 are weak and when there are many over-identifying restrictions (Bound et al ., 1995). In linear
 models with iid errors, Stock et al. (2002) propose rule-of-thumb thresholds for F-statistics for
 the first stage. However, in both the non-iid case (i.e. with clustered standard errors) and in cases
 with multiple endogenous variables, less is known about the relationship between the F-statistic
 and the properties of instrumental variables estimates. Baum et al. (2003) suggest comparing the
 test statistic to the Stock et al. (2002) critical values for the Cragg-Donald F statistic with a single
 instrument. According to this metric, results from Table 1 suggest that model 3 is a strong first-

 stage predictor of local pollution levels with a F-statistic that is 14 for CO pollution and to a lesser

 extent for NO2 pollution (F-stat of 5). The first stage in model 3 is not as strong as in models 1 and
 2, and the model is highly over-identified with twelve excluded instruments. Bound et al. (1995)
 show how the bias of 2SLS increases in the number of instruments and decreases in the strength
 of the first stage. The bias of 2SLS in the case of weakly identified or over-identified models is
 towards the OLS counterpart. Since this is consistent with model 3 estimates in Table 4 being
 smaller than both model 1 and 2 but still above the OLS estimates, Supplementary Table All
 estimates models 2 and 3 using Limited Information Maximum Likelihood (LIML), which is
 median-unbiased for over-identified, constant-effects models (Davidson and MacKinnon, 1993).
 Results remain similar, which suggests that weak instrument attenuation is less of a concern
 (Angrist and Pischke, 2008). Finally, a second alternative explanation for why model 3 gives
 lower point estimates is that the hourly wind data represent snapshots of the wind speed and
 direction and include significant measurement error. However, this is somewhat at odds with the
 fact that we find such significant spatial patterns in the pollution regressions.

 Panels B and C of Table 4 present estimates for children and senior citizens. While the dose-
 response relationships are larger, so are average sickness rates. In relative terms, a one standard
 deviation increase in CO pollution now causes a 37% increase in asthma cases for children under
 5 years compared to the average daily mean. On the other hand, a one standard deviation increase
 in CO pollution causes a 24% increase in heart problems for people 65 years and above. The higher
 'absolute' sensitivity in Panel B and C suggests that there may exist significant heterogeneity in
 the population response to ambient air pollution exposure. Since the population aged 65 years
 and older has guaranteed access to health insurance through Medicare, they may be more inclined
 to visit the emergency room or hospital relative to the rest of the population, leading to larger
 estimated effects. On the other hand, the relative magnitude compared to average sickness rates
 are only slightly larger than for the overall population.

 Columns (3)-(5) of each panel includes results for one of three placebos: strokes, bone
 fractures, and appendicitis. Both strokes and appendicitis are severe enough that people should go
 to the hospital. None of the results are significant for the overall population in Panel A. Consistent
 with the reduced form evidence in Table 2, some of the coefficients in Panel C are significant

 43. If we assign pollution based on the hospital zip code in panels C, results are generally not significant.
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 796 REVIEW OF ECONOMIC STUDIES

 at the 10% level. In Supplementary Table A 12 we replicate the analysis using only the primary
 diagnosis code. None of the placebo regressions remain significant. Since we are interested in the
 overall effect of pollution on hospitalization rates, our baseline models continue to count total
 sickness counts for both primary and secondary diagnoses.

 Supplementary Table Al 3 further investigates the sensitivity of our IV estimates to different
 choices of instrumental variables. As a point of comparison, Panel A replicates the baseline results
 of Table 4 for all ages. Panel B instruments for pollution using only the taxi time between 5 am
 and noon at Eastern airports to rule out endogeneity through reverse causality. The results remain
 robust to this change. Panel C goes one step further and instruments for taxi time at California
 airports using only weather measures at the three major airports in the Eastern US. While the
 point estimates remain comparable, the standard errors generally increase.44

 4.3.1. Jointly estimating the effect of ambient air pollutants. A common challenge in
 studies linking health outcomes to pollution measures is that ambient air pollutants are highly
 correlated. It is therefore difficult to determine empirically which pollutant is the true cause
 of any observed changes in health. Our research design provides one possible solution to the
 identification problem. Wind speed and wind direction differentially affect both CO and NO2
 dispersion patterns. Moreover, the rate of CO and NO2 emissions depend on the thrust produced
 by the engine, and higher wind speeds require more engine thrust. Wind speed hence impacts both
 the rate at which pollutants are produced and how they disperse. Table 5 estimates the joint effect
 of both CO and NO2 on health using our first stage model with wind speed and wind direction
 interactions (model 3).

 In all specifications for which we have multiple endogenous variables, we report the
 Angrist and Pischke (2008) conditional F-statistics in the tables and text, although these are
 somewhat hard to interpret. As mentioned above, there are no rule-of-thumb thresholds for linear
 models with non-iid errors or for models with multiple endogenous variables. When comparing
 the conditional F-statistics to the Stock et al. (2002), the F-statistics suggest that the first stage
 is "weak". Perhaps more usefully, in all specifications for which we have multiple endogenous
 variables, we also present two tests that are robust to issues pertaining to weak instruments,
 the Anderson-Rubin test statistic and the closely related Stock- Wright (2000) S statistic. The
 null hypothesis tested in both cases is that the coefficients of the endogenous regressors in the
 structural equation are jointly equal to zero, and, in addition, that the overidentifying restrictions
 are valid. We use a cluster-robust version of both test statistics that has the correct size even under

 weak identification (Chernozhukov and Hansen, 2008). The tests are equivalent to estimating the
 reduced form of the equation (with the full set of instruments as regressors) and testing that the
 coefficients of the excluded instruments are jointly equal to zero. In most specifications, inference
 based on the Anderson-Rubin and Stock-Wright tests are consistent with inference based on the
 Wald test of the same null hypothesis. This suggests that we are not drawing spurious inferences
 based on weak instruments. We also present results using LIML because LIML is approximately
 median unbiased for overidentified models, and the results are similar between 2SLS and LIML.

 When 2SLS is subject to weak instrument bias, the 2SLS estimand will diverge significantly from
 the LIML estimand toward the OLS estimand. Thus, the fact that LIML and 2SLS deliver similar

 results assuages our concerns pertaining to significant biases associated with weak instruments.45
 Table 5 shows that the coefficient for CO remains comparable in size to our baseline

 estimates from Table 4, albeit slightly larger. Conversely, the coefficients on NO2 switch

 44. We do not estimate model 3 using weather variables as it would include 3,456 instruments.
 45. A similar diagnostic exercise of this nature can be found on pages p. 213-215 of Angrist and Pischke (2008).

This content downloaded from 
�������������192.73.11.253 on Sun, 16 Feb 2025 03:42:39 UTC������������� 

All use subject to https://about.jstor.org/terms
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 TABLE 5

 Sickness rates regressed on instrumented pollution - joint estimation

 Acute All Heart Bone Appen-
 Asthma respiratory respiratory problems Stroke fractures dicitis

 Panel A: All Ages

 Model 3: CO 0.222** 0.867*** 1.189** 0.105 0.054 -0.127* -0.006

 (0.106) (0.313) (0.476) (0.139) (0.049) (0.073) (0.017)
 Model 3: N02 -2.2 -40.1 -57.4 10.7 -2.9 7.6 0.7

 (8.0) (25.6) (38.4) (13.4) (3.5) (5.6) (1.5)

 F(ist stage) -CO 4.18 4.18 4.18 4.18 4.18 4.18 4.18
 F( i st stage) - N02 1.57 1.57 1.57 1.57 1.57 1.57 1.57
 P(Anderson-Rubin) 0.0000 0.0000 0.0000 0.0012 0.0027 0.1418 0.0484
 P(Stock- Wright S) 0.0413 0.0795 0.1141 0.1232 0.5319 0.4795 0.5710

 Panel B: ages below 5 years

 Model 3: CO 0.901 4.685** 5.388** 0.133 -0.073 -0.385 -0.102

 (0.599) (2.167) (2.483) (0.142) (0.051) (0.355) (0.072)
 Model 3: N02 -18.8 -206.8 -237.6 -4.8 8.0* 30.9 7.7

 (46.1) (174.9) (199.0) (11.5) (4.1) (27.3) (6.4)

 F(ist stage) -CO 3.39 3.39 3.39 3.39 3.39 3.39 3.39
 F(ist stage) -N02 1.30 1.30 1.30 1.30 1.30 1.30 1.30
 P( Anderson-Rubin) 0.0000 0.0001 0.0000 0.0185 0.0474 0.0687 0.6100
 P(Stock- Wright S) 0.0588 0.0886 0.2163 0.4046 0.3567 0.3185 0.5764

 Panel C: age 65 years and above

 Model 3: CO 0.268 0.775* 1.726** 1.279 0.490 0.147 -0.051

 (0.323) (0.445) (0.772) (0.821) (0.399) (0.281) (0.046)
 Model 3: N02 20.1 -6.4 -25.8 60.3 -25.5 3.7 2.2

 (22.1) (36.3) (62.6) (67.7) (25.9) (21.4) (3.1)

 F( l st stage) - CO 4.96 4.96 4.96 4.96 4.96 4.96 4.96
 F( 1st stage) - N02 2.09 2.09 2.09 2.09 2.09 2.09 2.09
 P(Anderson-Rubin) 0.1146 0.0026 0.0035 0.0009 0.0164 0.1595 0.0017
 P(Stock- Wright S) 0.4530 0.1484 0.2756 0.1831 0.3849 0.2969 0.1264

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip codes 164 164 164 164 164 164 164
 Days 1,095 1,095 1,095 1,095 1,095 1,095 1,095

 Notes: Table regresses zip code level sickness rates (counts for primary and secondary diagnosis codes per 10 million
 people) on daily instrumented pollution levels (ppb) in 2005-7. The effect of the two pollutants is jointly estimated for
 the over-identified model 3 using LIML. Pollution is instrumented on airport congestion (taxi time) that is caused by
 network delays (taxi time at three major airports in the Eastern US). All regressions include weather controls (quadratic
 in minimum and maximum temperature, precipitation and wind speed as well as controls for wind direction), temporal
 controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the
 total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by
 *** 1%, ** 5%,* 10%.

 sign and are mostly negative and insignificant. We have also used the methods proposed by
 Chernozhukov and Hansen (2008) to build non-spherical confidence regions for the multiple
 endogenous variables. Within the joint parameter space of CO and NO2, the joint confidence
 region lies in the quadrant where CO is positive and NO2 is weakly negative.46

 46. The full set of results, which consist of two- dimensional plots for each hypothesis test, are available upon
 request.
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 798 REVIEW OF ECONOMIC STUDIES

 We interpret these findings as evidence that the returns from regulating CO exceed those from

 regulating NO2, at least for the population that comprises our sample. One possible explanation
 for our results stems from the work done by Auffhammer and Kellogg (2011). Figure 9 of
 Auffhammer and Kellogg (2011) shows that the Southern California coastline, the location of
 most of the zip codes in our study, ozone generation seems VOC limited, i.e ., a reduction in VOC
 reduces ozone. Conversely, regions further inland and in Northern California are NO2 limited.
 Reducing NO2 in areas that are VOC limited has little effect on ozone, and this may be the reason
 we observe small and insignificant results for NO2. In the remainder of the article, we therefore
 focus on CO.

 4.3.2. Threshold effects and non-linearities in the pollution-health relationship.
 We explore the functional form of the dose-response function in four separate ways.
 First, Supplementary Table A 14 estimates the relationship separately for the summer (April-
 September) and the winter (October-March). Each panel of the table provides the point estimates
 for the two seasons from a joint regression where all variables and instruments are interacted
 with seasonal dummies as well as the p-values of a test whether the coefficients are the same.
 Especially for the case of children under the age of 5 years, the effect seem to be significantly
 higher during winter months when average pollution levels are higher.

 Recall that CO and NO2 pollution are higher during the winter months, so a non-linear
 dose-response function that has increasing marginal damages of pollution should exhibit larger
 coefficients for the winter months. The coefficient for the winter months is almost always larger
 than for the summer months for the illnesses that are related to pollution (columns ( 1 a)-(2)). These
 results are consistent with increasing marginal impacts of pollution. However, there may be other

 important differences in health outcomes across seasons that could explain these disparities. An
 obvious candidate for differences between the summer and the winter would be the level of

 ambient ozone concentrations which tend to be much higher in the summer than the winter. In
 additional results (Supplementary Table A15), we control for ozone levels as a potential confound
 and the results are nearly identical. One possible explanation for why ozone does not impact the
 baseline regression results stems from measurement error in the excluded ozone regressor and/or
 avoidance behaviour pertaining to ozone.

 We have also explored models which estimate the possible non-linear effects of pollution on
 health outcomes by including higher order polynomials. Models with higher-order pollution terms
 increase the number of endogenous variables in our regressions, and we use the overidentified
 model 3 to instrument for the higher order terms. Since higher-order polynomials can be difficult to

 interpret, Supplementary Figure A5 plots the predicted marginal effects of the pollutant on a range
 of health outcomes as a function of the 'level' of the pollutant on the given day. That is, we plot the

 dose response function, where the y-axis measures the health response and the jc-axis measures
 the level of pollution. Since we are fitting non-linear models, the responsiveness is allowed to vary
 across the jc-axis. The dashed line displays the results from our baseline, linear dose-response
 model (constant marginal damage). The solid represents results from a quadratic model where
 the 95% confidence interval is added in grey. The four columns represent the four sicknesses
 that are related to pollution fluctuations (asthma, acute respiratory, all respiratory, and heart
 problems, respectively). The predicted marginal effect is plotted over the empirical distribution
 of daily pollution levels, from the 5th to the 95th percentile.47 While there is some evidence that
 respiratory problems (columns 1-3) exhibit increasing marginal damages as pollution levels start
 to increase, again especially for children under the age of 5 years, the confidence intervals reflect

 47. Supplementary Figure A4 shows the observed distribution of daily CO levels in our data set.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 799

 an inability to reject the null that the damage function is constant over the observed range of CO
 values.

 We have investigated non-linearities in two additional ways that are broadly consistent with the
 findings above (results available upon request). First, we estimated models whereby we interacted
 our daily pollution variation of interest with the mean pollution 'level' in a zip code. This allows
 the dose-response curve to vary (linearly) in the level of average pollution levels of a zip code.
 If this interaction term is zero, this would support the hypothesis that the marginal effect of a
 one unit increase in emissions is the same regardless of the level of ambient air pollution (iée.
 a constant, linear dose-response). If the coefficient on the interaction was significantly positive,
 then this would support the hypothesis that the marginal effect of ambient air pollution on health
 outcomes is progressively worse in areas with higher than average pollution levels. A challenge
 with this particular test is that the average level of ambient air pollution in a zip code can be
 correlated with many observed and unobserved factors that may contribute to heterogeneity in the
 dose-response relationship. For example, people in more polluted areas may lack basic preventive
 health services and thus be 'more' responsive to marginal changes in air pollution because of their
 underlying health conditions rather than any non-linearity in the dose-response. Nevertheless,
 results suggest (available upon request) that CO exhibits an increasing dose-response function.
 Second, we explored the shape of the dose-response function in an OLS, fixed effects setting.
 While we think the regression coefficient 'magnitudes' may be attenuated by things such as
 measurement error and/or avoidance type behaviours, the 'shape' of the dose-response curve is
 likely less sensitive to these concerns (unless of course the bias varied with the level of pollution
 - which might happen through avoidance behaviour such as "bad air day" alerts). We use this
 logic to explore the shape of the dose-response function by fitting OLS, fixed-effect regression
 models that include polynomials in the daily mean pollution level (i.e. quadratic, cubic, or quartic).
 We then plot the predicted marginal effects of the pollutant on a range of health outcomes as a
 function of the 'level' of the pollutant on the given day (as in Supplementary Figure A5). We see
 that for both asthma and respiratory illness, the predicted marginal effect is increasing in the level
 of the pollutant. The patterns suggests some sort of "threshold" by which the marginal effect of
 CO on health outcomes "flattens out".

 While the various results in this section come from different econometric models, the

 conclusions pertaining to the shape of the dose-response function remain similar across the
 specifications. The evidence suggests that the marginal effect of pollution is increasing in the level
 of the pollutant, but at a decreasing rate. The diminishing marginal damages of the dose-response
 function is also consistent with modern evidence from epidemiology (see e.g. Pope et al. (2009)
 and Pope III et al. (2011)).

 4.3.3. Potential confounding sources of variation. While our estimates suggest that
 CO is primarily responsible for the observed health responses, there may be other sources of
 unobserved, concomitant variation that may lead to similar relationships. For example, while
 we estimate the effect of CO and NO2 in the same model, we do not directly control for other
 pollutants such as ozone. It seems unlikely that ozone O3 is causing the observed relationship. As
 mentioned above, Supplementary Table A 14 estimates the relationship separately for the summer
 (April-September) and the winter (October-March). Ozone is higher during the summer, while
 CO and NO2 are higher during the winter. The observed health effects are larger and more
 significant during the winter time when ozone is not a big problem. We have also estimated
 models that directly control for ozone (Supplementary Table A 15), and the results remain similar
 and a bit more precise than our baseline estimates. The standard errors are also much larger for
 the summer, especially in the case of acute respiratory problems and overall respiratory problems.
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 800 REVIEW OF ECONOMIC STUDIES

 This is not surprising, because other pollutants like ozone also impact health outcomes, which
 will be part of the error term.

 One potential omitted variable that we unfortunately cannot measure well is particulate
 matter, a pollutant which may emerge from combustion emissions and has been shown in the
 past to increase infant mortality due to respiratory causes (Currie and Neidell, 2005). Particulate
 matter monitors in California are limited in both their spatial and temporal coverage; readings on
 ambient particulate monitors are conducted every few days (as opposed to hourly data from other
 pollutants), and there are far fewer monitors. These limitations do not square well with our research

 design which relies on high-frequency, daily variation across very localized areas. Nevertheless,
 we have directly explored the degree to which particular matter predicts adverse health outcomes
 for the subsample of days and locations for which we have particulate monitor data. Table A 16
 presents results using the full set of particulate monitors for PM2.5.48 Supplementary Table A 16
 suggests that PM does not have much explanatory power in predicting health outcomes, although
 the standard errors preclude definitive conclusions.49 Recall that Los Angeles Airport is not a
 significant point source of particulate matter. While it is the largest point source for CO emissions
 in the state of California, it only ranks 2,763 and 2,782 among emissions of PMio and PM2.5.
 Even still, we believe that some amount of caution is warranted in interpreting CO as the unique
 pollutant-related causal channel leading to adverse health outcomes; there may be in fact other
 unobserved sources of ambient air pollution that covary with CO that may also affect health.

 4.3.4. Inpatient versus outpatient data. Traditionally, studies have relied on Inpatient
 data sets to examine health responsiveness to various external factors such as pollution. One
 limitation of such data is that a person only enters the Inpatient data set if they are admitted
 for an overnight stay in the hospital. Many ER visits result in a discharge the same day and
 hence never result in an overnight stay. Starting in 2005, California began collecting Outpatient
 (Emergency Room) data. Previous published estimates all replied on Inpatient data only. To better
 understand the differences between these two datasets as well as compare our results to those from

 the previous literature, we replicate the analysis using sickness counts from only the Inpatient
 data in Panels Al-Cl in Supplementary Table A17. By the same token, Panels A2-C2 only uses
 the Outpatient data.50 Not surprisingly, there is a significant relationship between pollution and
 heart problems (column 2) in the Inpatient data for patient ages 65 years and above (as these
 conditions usually require an overnight stay), but no or very limited sensitivity of asthma or
 overall respiratory illnesses (columns la and lc) to pollution. Conversely, the Outpatient (ER)
 data shows a much larger sensitivity of respiratory problems to changes in pollution. These results
 show the importance of Outpatient (ER) data when studying the morbidity effects of ambient air
 pollution on health outcomes.

 4.3.5. Temporal displacement and dynamics. Our baseline regression models examine
 only the contemporaneous effect of pollution on health. Contemporaneous estimates may lead to
 underestimates of the total effects of air pollution on health if health effects respond sluggishly
 to changes in pollution. Conversely, estimates may overstate the hypothesized effect due to

 48. Unfortunately, we only observe 2 PM10 pollution monitors within 15 km of an airport (or equivalently two- zip
 codes) which makes our research design infeasible due to the importance of distance and wind angle/speed heterogeneity.

 49. All of the estimates in Supplementary Table A 1 6 come from limited information maximum likelihood estimates

 as opposed to 2SLS (although results are similar).
 50. Patients that enter the ER and are later admitted for an overnight stay are dropped from the ER data to avoid

 double counting.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 801

 temporal displacement: if spikes in daily pollution levels make already sick people go to the
 hospital one day earlier, contemporaneous models overestimate the true effect associated with
 permanently higher pollution levels. If temporal displacement is important, the contemporaneous
 increase in sickness rates should be followed by a decrease in sickness rates in subsequent
 periods.

 We investigate both of these issues by estimating a distributed lag regression model, including
 three lags in the pollution variable of interest. Table 6 presents the distributed lag results of
 pollution for the overall population. We present individual coefficients as well as the combined
 effect (the sum of the four) in the last row of each panel. To preserve space, we only list the
 results for the sickness categories that are impacted by changing CO pollution levels. Since
 regulatory policy is concerned with the health effects of a permanent change in pollution, we
 focus on cumulative effects of the model over the estimated 4 day horizon. The cumulative effect
 is slightly larger than the comparable baseline results in Table 4. This might be because some
 individuals delay hospital visits, although the exact dynamics are hard to determine empirically
 given the lack of significance of the individual coefficients. We have also experimented with
 different leads/lags (available upon request). For example, in a model with three leads and six
 lags, the sum of the six lags and contemporaneous terms are similar in magnitude. The three
 leads, on the other hand, are not jointly significant.

 4.3.6. Count model. Our baseline health estimates consist of linear probability models,
 relating the population-scaled hospital admission rates to changes in pollution. To account for the
 non-negative and discrete nature of the hospital admission data, Table 7 presents estimates from
 a quasi-maximum likelihood, conditional Poisson IV estimator given in equation (8). In contrast
 to the baseline linear probability health models, these models are not weighted. In addition,
 since we use a control function to address issues pertaining to measurement error and omitted
 variables, we adjust standard errors for the first stage sampling variation using a block-bootstrap
 sampling procedure, resampling zip codes.51 Analogous to the linear probability model, we find
 that respiratory illnesses and heart problems are sensitive to pollution fluctuations, while the three
 placebos are not (with the usual caveat applying to sickness counts for people aged 65 years and
 above).

 The coefficients no longer give marginal impacts and are difficult to interpret. In order to
 compare the marginal impacts of pollution exposure and congestion across all of our models,
 Table 8 presents the predicted increase in sickness counts from (1) a one standard deviation
 increase in taxi time, and (2) a one standard deviation increase in pollution levels in each zip
 code. The results are then added for all zip codes that are within 10 km of an airport. The table
 also summarizes population surrounding airports. Various admission categories are given in rows,
 while the columns show the results for each of the twelve airports. The last column gives the
 combined impact among all twelve airports.

 Panels A, B, and C give the predicted increase in hospital admissions using estimates from
 the baseline linear probability model whereby pollution is instrumented using model 3 (pollution
 instrumented with taxi time + interactions with distance and wind direction). These results are

 presented for the overall population (Panel A), children below 5 years (Panel B), and senior citizens
 65 years and above (Panel C). Panel D gives the results for the overall population using the count
 model shown in Table 7. Impacts are evaluated at the sample mean for the nonlinear Poisson
 model. The results from the Poisson model are similar to those from the linear probability model

 5 1 . This is equivalent to clustering by zip code instead of two-way clustering by zip code and day. An unweighted
 regression of the linear probability model (available upon request) that clusters by zip code gives comparable results.
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 TABLE 6

 Sickness rates of all ages regressed on instrumented CO pollution - lagged pollution

 Acute All Heart

 Asthma respiratory respiratory problems

 Model 1

 Pollution in t-3 0.026 0.220 0.345 0.022

 (0.096) (0.188) (0.250) (0.139)
 Pollution in t-2 0.130 0.109 0.023 0.003

 (0.143) (0.246) (0.336) (0.255)
 Pollution in t-1 -0.017 -0.060 -0.001 -0.020

 (0.132) (0.251) (0.289) (0.183)
 Pollution in t 0.200** 0.355 0.485 0.422***

 (0.101) (0.263) (0.331) (0.134)

 Cum. Effect 0.339*** 0.624*** 0.853*** 0.427***

 (0.070) (0.163) (0.210) (0.151)

 Model 2

 Pollution in t-3 0.040 0.229 0.353 0.022

 (0.094) (0.188) (0.250) (0.138)
 Pollution in t-2 0.117 0.098 0.013 -0.002

 (0.141) (0.245) (0.331) (0.250)
 Pollution in t-1 -0.021 -0.062 -0.004 -0.028

 (0.133) (0.253) (0.291) (0.184)
 Pollution in t 0.203** 0.352 0.485 0.415***

 (0.099) (0.262) (0.331) (0.132)

 Cum. Effect 0.338*** 0.618*** 0.847*** 0.408***

 (0.066) (0.163) (0.214) (0.143)

 Model 3

 Pollution in t-3 -0.002 0.126 0.121 0.045

 (0.041) (0.095) (0.124) (0.057)
 Pollution in t-2 0.079 0.023 0.020 -0.014

 (0.060) (0.116) (0.151) (0.087)
 Pollution in t-1 -0.059 0.008 0.020 -0.004

 (0.056) (0.154) (0.191) (0.111)
 Pollution in t 0.177*** 0.316 0.420 0.225**

 (0.067) (0.201) (0.263) (0.100)

 Cum. Effect 0.195*** 0.473*** 0.582*** 0.252***

 (0.052) (0.115) (0.153) (0.067)

 Observations 179,088 179,088 179,088 179,088
 Zip Codes 164 164 164 164
 Days 1,092 1,092 1,092 1,092

 Notes: Table replicates the results of CO pollution on sickness counts for all ages in Table 4 except that three lags of the
 instrumented pollution levels are included. Each column in each panel presents the coefficients from one regression as
 well as the cumulative effect (sum of all four coefficients). Significance levels are indicated by *** 1%, ** 5%, * 10%.

 in Panel A. Panel E gives the average daily sickness count in 2005-7 for the overall population
 for comparison.
 Pollution fluctuations have a large effect on the 6 million people living within 10 km of one of

 the twelve airports: A one standard deviation increase in a zip-codes specific pollution fluctuations
 increases asthma counts for the overall population by 17% under the linear probability model
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 TABLE 7

 Sickness counts regressed on instrumented CO pollution - poisson model

 Acute All Heart Bone Appen-
 Asthma respiratory respiratory problems Stroke fractures dicitis

 Panel A: all ages

 Modell: CO 0.834*** 0.596*** 0.577*** 0.488*** 0.270 -0.114 0.325

 (0.171) (0.109) (0.112) (0.128) (0.184) (0.184) (0.454)
 Model 2: CO 0.846*** 0.589*** 0.573*** 0.482*** 0.246 -0.116 0.245

 (0.172) (0.111) (0.116) (0.128) (0.185) (0.188) (0.466)
 Model 3: CO 0.561*** 0.399*** 0.378*** 0.292*** 0.132 -0.150 0.163

 (0.132) (0.090) (0.087) (0.095) (0.195) (0.133) (0.325)

 Panel B: ages below 5 years

 Modell: CO 1.202*** 0.237 0.303 2.061* 3.334 0.187 -0.369

 (0.387) (0.179) (0.208) (1.148) (2.876) (0.572) (2.923)
 Model 2: CO 1.202*** 0.216 0.278 1.891* 3.347 0.233 -0.691

 (0.396) (0.179) (0.207) (1.105) (2.799) (0.567) (2.963)
 Model 3: CO 1.133*** 0.261** 0.256* 1.297 4.238* -0.064 -1.290

 (0.287) (0.132) (0.143) (0.966) (2.480) (0.495) (2.643)

 Panel C: ages 65 years and older

 Modell: CO 1.287*** 0.757*** 0.610*** 0.634*** 0.397* 0.626** 1.190

 (0.364) (0.208) (0.173) (0.165) (0.219) (0.314) (1.247)
 Model 2: CO 1.264*** 0.743*** 0.608*** 0.630*** 0.388* 0.589* 1.135

 (0.341) (0.202) (0.174) (0.166) (0.224) (0.313) (1.291)
 Model 3: CO 0.804*** 0.413** 0.397** 0.369*** 0.159 0.292 -0.852

 (0.275) (0.180) (0.154) (0.126) (0.223) (0.219) (1.185)

 Observations 179,580 179,580 179,580 179,580 179,580 179,580 179,580
 Zip Codes 164 164 164 164 164 164 164
 Days 1,095 1,095 1,095 1,095 1,095 1,095 1,095

 Notes: Table replicates the results for regression models of CO in Table 4 except that we use a Poisson count model
 instead of a linear probability model. Further differences are that the regressions are unweighted and standard errors are
 obtained from 100 clustered bootstrap draws (drawing entire zip code histories with replacement), which is comparable
 to clustering by zip code in the baseline regression. Significance levels are indicated by *** 1%, ** 5%, * 10%.

 and 19% under the Poisson count model.52 Overall, a one standard deviation increase in zip code
 specific 'daily' pollution levels results in 107 additional admissions for respiratory problems
 and 49 additional admissions for heart problems, which are 17% and 9% of the daily mean.
 For respiratory problems, infants only account for roughly one third of the overall impacts.
 Studies focusing only on the impact on infants therefore would miss a significant portion of the
 overall impacts. Not surprisingly, the elderly are responsible for the largest share of heart related
 impacts.

 Airport congestion significantly contributes to the overall impacts: a one standard deviation
 increase in taxi time increases respiratory and heart admissions by roughly 1% of the daily
 mean. At LAX, the largest airport in California, a one standard deviation increase in taxi time is
 responsible for roughly one-fourth of the effect of a one-standard deviation increase in pollution.

 52. Recall that these estimates are smaller than what we reported under Table 4, where we increased pollution levels
 in each zip code by the average 'overall' standard deviation in pollution levels and took an average baseline sickness rate
 that was not population weighted.
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 TABLE 8

 Impact of CO pollution on health ( Model 3)

 LAX SFO SAN OAK SJC SMF SNA ONT BUR SBA LGB PSP Total

 Panel A: linear probability model - all ages

 Population 812 182 540 448 910 41 822 454 794 59 875 93 6028

 One Standard Deviation increase in taxi time

 Asthma 1.20 0.16 0.29 0.15 0.21 0.01 0.26 0.09 0.12 0.00 0.10 0.01 2.60

 Acute respiratory 2.44 0.34 0.59 0.30 0.44 0.02 0.53 0.19 0.25 0.01 0.20 0.02 5.31
 All respiratory 3.18 0.44 0.77 0.39 0.57 0.03 0.68 0.25 0.32 0.01 0.25 0.03 6.91
 Heart disease 1.40 0.19 0.34 0.17 0.25 0.01 0.30 0.11 0.14 0.00 0.11 0.01 3.04

 One Standard Deviation increase in pollution

 Asthma 4.80 0.52 4.00 1.37 5.96 0.18 5.13 1.98 5.92 0.18 6.45 0.15 36.63

 Acute respiratory 9.82 1.06 8.17 2.80 12.18 0.36 10.49 4.04 12.10 0.36 13.19 0.30 74.87
 All respiratory 12.78 1.38 10.63 3.64 15.85 0.47 13.65 5.26 15.75 0.47 17.17 0.40 97.44
 Heart disease 5.61 0.61 4.67 1.60 6.96 0.21 5.99 2.31 6.92 0.21 7.54 0.17 42.79

 Panel B: linear probability model - ages 5 years and below

 Population 54 11 33 32 68 4 58 35 55 3 65 6 424

 One Standard Deviation increase in taxi time

 Asthma 0.27 0.03 0.06 0.03 0.05 0.00 0.06 0.02 0.03 0.00 0.02 0.00 0.59

 Acute fespiratory 0.87 0.11 0.19 0.11 0.17 0.01 0.20 0.08 0.09 0.00 0.08 0.01 1.91
 All respiratory 1.00 0.13 0.22 0.13 0.20 0.01 0.23 0.09 0.10 0.00 0.09 0.01 2.20
 Heart disease 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.07

 One Standard Deviation increase in pollution

 Asthma 1.14 0.11 0.84 0.33 1.54 0.06 1.24 0.53 1.42 0.03 1.68 0.03 8.96

 Acute respiratory 3.69 0.37 2.73 1.08 4.98 0.19 4.03 1.73 4.59 0.09 5.43 0.10 28.99
 All respiratory 4.25 0.42 3.14 1.24 5.74 0.22 4.63 1.99 5.28 0.11 6.25 0.11 33.37
 Heart disease 0.13 0.01 0.09 0.04 0.17 0.01 0.14 0.06 0.16 0.00 0.19 0.00 1.00

 Panel C: linear probability model - ages 65 years and above

 Population 82 26 54 51 88 3 79 34 79 12 89 18 615

 One Standard Deviation increase in taxi time

 Asthma 0.30 0.06 0.07 0.04 0.05 0.00 0.06 0.02 0.03 0.00 0.02 0.01 0.67

 Acute respiratory 0.43 0.08 0.10 0.06 0.07 0.00 0.09 0.03 0.04 0.00 0.03 0.01 0.94
 All respiratory 0.87 0.17 0.21 0.12 0.15 0.00 0.18 0.05 0.09 0.01 0.07 0.02 1.93
 Heart disease 1.19 0.23 0.29 0.16 0.20 0.01 0.24 0.07 0.12 0.01 0.10 0.02 2.63

 One Standard Deviation increase in pollution

 Asthma 1.23 0.19 1.02 0.39 1.46 0.03 1.28 0.38 1.51 0.09 1.69 0.08 9.33

 Acute respiratory 1.73 0.26 1.44 0.55 2.06 0.04 1.80 0.54 2.13 0.13 2.38 0.11 13.15
 All respiratory 3.54 0.54 2.94 1.14 4.21 0.08 3.68 1.10 4.36 0.26 4.87 0.22 26.93
 Heart disease 4.82 0.74 4.00 1.54 5.73 0.11 5.01 1.49 5.93 0.35 6.62 0.29 36.63

 (i continued )

 On the other hand, smaller airports (e.g. Santa Barbara or Long Beach) are responsible for a much
 lower share of the overall pollution impacts.

 4.3.7. Economic Cost. In order to monetize the health impacts associated with both
 pollution exposure, we use the diagnosis-specific reimbursement rates offered to hospitals through
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 TABLE 8

 Continued

 Panel D: Poisson model - all ages

 One Standard Deviation increase in taxi time

 Asthma 1.41 0.21 0.35 0.24 0.16 0.01 0.16 0.09 0.11 0.00 0.11 0.01 2.87

 Acute respiratory 2.62 0.40 0.61 0.42 0.34 0.02 0.43 0.20 0.26 0.00 0.23 0.03 5.55
 All respiratory 3.44 0.53 0.81 0.54 0.45 0.02 0.55 0.26 0.34 0.01 0.31 0.04 7.30
 Heart disease 1.59 0.28 0.40 0.23 0.22 0.01 0.26 0.11 0.16 0.00 0.14 0.02 3.42

 One Standard Deviation increase in pollution

 Asthma 6.35 0.67 5.29 2.29 5.02 0.22 3.60 2.00 6.22 0.09 8.54 0.14 40.41

 Acute respiratory 11.47 1.35 8.93 3.98 10.22 0.33 9.09 4.48 13.99 0.19 16.81 0.39 81.24
 All respiratory 15.00 1.76 12.01 5.07 13.26 0.41 11.79 5.91 18.16 0.28 22.70 0.57 106.93
 Heart disease 6.72 0.87 5.85 2.13 6.30 0.16 5.62 2.48 8.62 0.23 10.03 0.30 49.31

 Panel E: baseline average - all ages

 Asthma 33.1 7.9 22.3 25.4 24.2 1.6 18.1 14.9 26.0 0.9 36.0 3.0 213.6

 Acute respiratory 87.4 21.7 55.2 63.2 71.8 3.6 66.9 48.0 85.8 3.1 104.3 11.8 623.0
 All respiratory 121.3 30.3 78.2 85.2 98.7 4.7 91.6 67.2 117.9 4.6 149.0 18.0 866.8
 Heart disease 72.8 20.3 50.0 46.4 61.7 2.4 56.9 36.9 73.4 5.0 86.1 12.3 524.2

 Notes: Table gives population as well as daily hospital admissions for all zip codes that are within 10 km (6.2 miles)
 of one of the twelve major California airports. Panels A-D give predicted changes in sickness counts, while Panel E
 gives baseline averages. Panels A-C use the linear probability model 1 for CO from Table 4, while panel D uses the
 Poisson model 1 for CO from Table 7. Panel E gives average daily sickness counts in the data. The first twelve columns
 give impacts by airport, while the last column gives the total for all twelve airports. Population is in thousand. Predicted
 changes in hospitalization are for both inpatient as well as outpatient admissions.

 Medicare.53 We view this measure as a lower bound on the total health costs for several reasons:

 first, our methodology measures limited impacts on both a temporal and spatial scale. By focusing
 on day-to-day fluctuations, we do not address the long run, cumulative effect of pollution on
 health. If these are sizable relative to the contemporaneous effects, the overall cost estimate will
 be higher. Similarly, our focus has been on individuals living within 10 km of an airport. Some
 of our estimates suggest the marginal impact of taxi time extends beyond the 10 km radius, in
 which case we would be understating the overall effect. Second, we only count people that are
 sick enough to go to the hospital - anybody who sees their primary care physician or stays home
 feeling sick will not be counted. Recent work by Hanna and Oliva (2015) finds that pollution
 decreases labour supply in Mexico City, imposing real economic costs on society not measured
 in our analysis. Similarly, Deschênes et al. (2012) find that increased levels of ambient NO2
 lead to increased levels of spending on respiratory related prescription medicines, an outcome
 not measured in our analysis. Third, and most importantly, the marginal willingness to pay to
 avoid treatment is likely higher than the cost of treatment. For example, severe heart-related
 problems that are not treated within a narrow time frame will likely result in death. The statistical
 value of life that EPA uses for its benefit-cost analyses is around 6 million dollars, which is
 1,000 times as larger as our medical reimbursement cost for heart-related problems. Individuals
 might be willing to pay significantly more than medical reimbursement rates to avoid illnesses

 53. This information comes from a translation between our hospital diagnosis codes (ICD-9) and Diagnosis
 Related Group (DRG) codes. We used the crosswalk from the AMA Code Manager Online Elite. Using the set of
 DRG codes, we calculate the Medicare reimbursement rates using the DRG Payment calculator provided by TRICARE
 (http://www.tricare.mil/drgrates/). In accordance with Medicare reimbursement policy, we adjust the DRG payments
 using the average wage index in our sample. The average cost for respiratory problems and heart related admissions are
 US$ 2702 and 6501, respectively.
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 806 REVIEW OF ECONOMIC STUDIES

 that, if not adequately treated, have dire consequences. Using the predicted increase in hospital
 visits under the linear probability model given in Table 8, a one standard deviation increase in
 pollution levels amounts to about a $540,000 increase in hospitalization payments related to
 respiratory and heart related hospital admissions under model 3. 54 Since a one-standard deviation
 change in pollution is an extrapolation from the fluctuations caused by airport congestion, we
 also analysis counterfactual where peak exposure levels are capped using the non-linear models
 of Supplementary Figure A5 but find comparable results that are available upon request.55

 5. CONCLUSIONS

 This study has shown how daily variation in ground level airport congestion due to network delays
 significantly affects both local pollution levels as well as local measures of health. In doing so, we
 develop a framework through which to credibly estimate the effects of exogenous shocks to local
 air pollution on contemporaneous measures of health. Daily local pollution shocks are caused by
 events that occur several thousand miles away and are arguably exogenous to the local area. We
 address several longstanding issues pertaining to non-random selection and behavioural responses
 to pollution. In addition, we show how newly available data on the universe of emergency room
 provides much cleaner insight as to the sensitivity of populations to ambient pollution levels,
 relative to existing Inpatient Discharge records. Our results suggest that ground operations at
 airports are responsible for a tremendous amount of local ambient air pollution. Specifically, a
 one standard deviation change in daily congestion at LAX is responsible for a 0.28 standard
 deviation increase in levels of CO next to the airport that fades out with distance. The average
 impact for zip codes within 10 km is 0.23 standard deviations.

 When connecting these models to measures of health, we find that admissions for respiratory
 problems and heart disease are strongly related to these pollution changes. A one standard
 deviation increase in daily zip-code specific pollution levels increases asthma counts by 17%
 of the baseline average, total respiratory problems by 17%, and heart problems by 9%. Infants
 and the elderly show a higher sensitivity to pollution fluctuations, and marginal damages of
 pollution seem to be increasing in pollution for infants. At the same time, adults age 20-64 years
 are also impacted. For respiratory problems, the general adult population accounts for the majority

 of the total impacts despite the lower sensitivity to fluctuations as they are the largest share of the
 population. A one standard deviation increase in pollution levels is responsible for 540 thousand
 dollars in hospitalization costs for the 6 million people living within 10 km of one of the twelve
 airports of our study. This is likely a significant lower bound as the willingness to pay to avoid
 such illnesses will be higher than the Medicare reimbursement rates.

 Examining various mechanisms for the observed pollution-health relationship, we find that
 CO is primarily responsible for the observed health effects as opposed to NO2 or O3. We find no
 evidence of forward displacement or delayed impacts of pollution. We also find no evidence that
 people in areas with larger pollution shocks are less susceptible or less responsive to pollution.

 These estimates suggest that relatively small amounts of ambient air pollution can have
 substantial effects on the incidence of local respiratory illness, at least for the population that

 54. The corresponding number under model 1 is $920 thousand. These figures are calculated by taking the estimated
 increase in hospital visits and multiplying it by the average Medicare reimbursement for each of the respective diagnoses.

 55. Specifically, we test the sensitive of our results to assumed linear extrapolation through a counterfactual where
 all CO levels in 2005-7 are caped at half the observed mean, i.e. values that exceed half the historic mean are reduced
 to equal half the historic mean. The implied pollution reduction is evaluated both using our linear baseline model as well
 as a quadratic or cubic in pollution exposure. The predicted economic benefits are 520 thousand in the linear model and
 650 thousand in the two non-linear models, suggesting that allowing for increasing marginal damages of pollution might

 give slightly larger damages.
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 SCHLENKER & WALKER AIRPORTS AND AIR POLLUTION 807

 comprises our study. While EPA recently decided against lowering the existing carbon monoxide
 standards due to lack of sufficient evidence of the harmful effects of CO at levels below current

 EPA mandates, we find significant impacts on morbidity. Recent research suggests that the rates
 of respiratory illness in the US are rising dramatically, even as ambient levels of air pollution
 have continued to fall (Center for Disease Control, 2011). Why asthma rates continue to rise is
 an open question, but the increase in asthma rates is most pronounced among African Americans
 who disproportionately live in densely populated, congested areas. At the same time, traffic
 congestion in cities has been rising dramatically. Results presented here suggest that at least part
 of the increased rate of asthma in urban areas can be explained by increased levels of traffic
 congestion. The exact mechanism remain beyond the scope of the current study, but this remains
 an interesting area for further research.56

 Acknowledgments. We would like to thank Antonio Bento, Janet Currie, Ryan Kellogg, Mushfiq Mobarak, Matthew
 Neidell, Marit Rehavi, Jay Shimshack, and Christopher Timmins for comments on an earlier version of this article. All
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 Supplementary Data

 Supplementary data are available at Review of Economic Studies online.

 56. Currently, the highest rates of asthma incidence in the US are found in Bronx, New York (Garg et al., 2003).
 This area of northern New York City is bisected by five major highways, that rank among the most congested in the US
 (Bruner, 2009).
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