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Constructing a Control Group Using Multivariate Matched
Sampling Methods That Incorporate the Propensity Score
PAUL R. ROSENBAUM and DONALD B. RUBIN*

Matched sampling is a method for selecting units from a
large reservoir of potential controls to produce a control
group of modest size that is similar to a treated group with
respect to the distribution of observed covariates. We il-
lustrate the use of multivariate matching methods in an
observational study of the effects of prenatal exposure to
barbiturates on subsequent psychological development. A
key idea is the use of the propensity score as a distinct
matching variable.

KEY WORDS: Observational studies; Bias reduction; Pro-
pensity scores; Mahalanobis metric matching; Nearest avail-
able matching.

1. INTRODUCTION: BACKGROUND;
WHY MATCH?

Matched Sampling in Observational Studies. In many
observational studies, there is a relatively small group of
subjects exposed to a treatment and a much larger group of
control subjects not exposed. When the costs associated with
obtaining outcome or response data from subjects are high,
some sampling of the control reservoir is often necessary.
Matched sampling attempts to choose the controls for further
study so that they are similar to the treated subjects with
respect to background variables measured on all subjects.

The Danish Cohort. We examine multivariate matched
sampling using initial data from a proposed study of the
effects on psychological development of prenatal exposure
to barbiturates. The children under study were born between
1959 and 1961 and have been the object of other studies
(e.g., Mednick et al. 1971; Zachau-Christiansen and Ross
1975). Prenatal and perinatal information is available for
221 barbiturate-exposed children and 7,027 unexposed chil-
dren. A battery of measures of subsequent psychological
development are to be obtained from all 221 exposed chil-
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dren, but cost considerations require sampling of the unex-
posed children to create a control group in which the measures
will be obtained. The cost of the study will be approximately
linear in the number of children studied—with basic costs
that are largely independent of the number of children, and
other costs associated with locating and examining the chil-
dren that are approximately proportional to the number of
children studied.

Approximate Efficiency Considerations.  To obtain a rough
idea of the loss in efficiency involved in not including all
unexposed children as controls, suppose for the moment
that there is no concern with biases between exposed and
unexposed groups, in the sense that the mean difference
between the groups can be regarded as an unbiased estimate
of the effect of prenatal exposure to barbiturates. If control
children are randomly sampled from among the 7,027 unex-
posed children, and if the variance, o2, of a particular psy-
chological response is the same in the treated and control
groups, then the standard error of the treated versus control
difference in means will be o(1/221 + 1/N,)'2, where N,
is the number of control children studied. For N. = 100,
221, 442 (= 2 x 221), 663 (= 3 x 221), 884 (= 4 X
221), 2,210 (= 10 x 221), and 7,027 (= 31.8 x 221),
the multipliers (1/221 + 1/N,)"? are, respectively, .121,
.095, .082, .078, .075, .071, and .068. The cost of studying
all 7,027 control children would be substantially greater than
the cost of a modest sample, and the gain in precision would
not be commensurate with the increase in cost. Cost con-
siderations in this study led to a sample of 221 matched
controls.

Distributions of Background Variables Before Match-
ing. In fact, forming a control group by random sampling
of the unexposed children is not a good idea. Many of the
unexposed children may not be good controls because they
are quite different from all exposed children with respect to
background variables. Consequently, controls will not be
selected by random sampling, but rather by matched sam-
pling on the basis of the covariates listed in Table 1. From
the ¢ statistics and standardized differences in Table 1, we
see that the exposed and unexposed children differ consid-
erably. The hope is that matched sampling will produce a
control group that is similar to the treated group with respect
to these covariates.

For Nontechnical Audiences, Matched Sampling Is Often
a Persuasive Method of Adjustment. One virtue, not the
least important, of matched sampling is that nontechnical
audiences often find that matching, when successful, is a
persuasive method of adjusting for imbalances in observed
covariates. Although matching algorithms can be complex,
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Table 1.

Covariate Imbalance Prior to Matching

Covariate

Description of ariginal covariate

As used for estimating

the propensity score

Differences in covariate
means prior to matching

Two-sample
t statistic

Standardized
difference in %*

Child characteristics

Sex Female/male 0, 1 -1.02 -7
Twin Single/multiple birth 0, 1 -1.28 -10
Sibpos Oldest child (no, yes) 0,1 -2.33 -16
C-age Age at start of study Months .46 3
Mother characteristics
SES Socioeconomic status (9 ordered categories) Integers 1-9 3.66 26
Education Mother’s education (4 ordered categories) Integers 1-4 2.09 15
Single Unmarried (no, yes) 0,1 -5.70 —-43
M-age Age (years) Years 8.99 59
Height Mother's height (5 ordered categories) Integers 1-5 2.55 18
Characteristics of
the pregnancy
WGTHGT3 (Weight gain)/height® (30 values based on 30 values -.00 -0
category midpoints)
PBC415 Pregnancy complications (an index) Index value and its 2.61 17
square
PRECLAM Preeclamsia (no, yes) 0, 1 1.82 9
RESPILL Respiratory illness (no, yes) 0,1 1.73 10
LENGEST Length of gestation (10 ordered (10 — /)2 and i for .72 6
categories) i=12..,10
Cigarette Cigarette consumption, last trimester Integers 0—4 and —~ .48 -3
(0 = none, plus 4 ordered categories) their squares
Other Drugs
Antihistamine No. of exposures to antihistamines (0-6) Integers 0-6 and 1.76 10
their squares
Hormone No. of exposures to hormones (0-6) Integers 0-6 and 8.41 28
their squares
HRMG1 Exposed to hormone type 1 (no, yes) 0,1 2.67 15
HRMG2 Exposed to hormone type 2 (no, yes) 0,1 3.75 19
HRMG3 Exposed to hormone type 3 (no, yes) 0,1 3.46 18

*The standardized difference in percent is the mean difference as a percentage of the average standard deviation: 100(xy — ion)/[(s$ + sgﬂ)/Z]"z, where for each cavariate, X1 and

XoR are the sample means in the treated group and the control reservoir and s%’ and sSn are the carresponding sample variances.

the simplest methods, such as comparisons of sample mo-
ments, often suffice to indicate whether treated and matched
control groups can be directly compared without bias due
to observed covariates.

The Limitations of Incomplete Categorical Matching.
Perhaps the most obvious matching method involves cate-
gorizing each of the 20 variables in Table 1 and considering
a treated child and control child as a suitable matched pair
only if they fall in the same category on each variable.
Unfortunately, even if each of the 20 variables is divided
into just two categories, the 7,027 potential controls will be
distributed among 2% = 1 million matching categories, so
exact matches may be hard to find for some treated children.
If a version of categorical matching described by Rosen-
baum and Rubin (in press) is applied to the current data,
only 126 of the 221 treated children have exact matches,
so 95 (43%) of the treated children are discarded as un-
matchable. Discarding treated children in this way can lead
to serious biases, since the unmatched treated children differ
systematically from the matched treated children. We con-
sider only methods that match all 221 exposed children.

34 The American Statistician, February 1985, Vol. 39, No. 1

2. THEORY RELEVANT TO THE CHOICE
OF A MATCHING METHOD

2.1 The Most Important Scalar Matching Variable:
The Propensity Score

Let x denote the vector of covariates for a particular child,
and let the binary variable z indicate whether the child was
exposed (z = 1) or unexposed (z = 0). The propensity score,
e(x), is the conditional probability of exposure given the
covariates; that is, e(x) = Pr(z = 1|x). Treated children
and control children selected to have the same value of e(x)
will have the same distributions of x; formally, z and x are
conditionally independent given e(x). Exact matching on
e(x) will, therefore, tend to balance the x distributions in
the treated and control groups. Moreover, matching on e(x)
and any function of x, such as selected coordinates of x,
will also balance x. (For proofs of these balancing properties
of propensity scores, see Rosenbaum and Rubin 1983a,
Theorems 1 and 2. For related discussions of propensity
scores, see Rubin 1983, 1984; Rosenbaum 1984b; and Ro-
senbaum and Rubin 1984.) The propensity score is a po-
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tential matching variable because it does not depend on
response information that will be collected after matching.
Since exact adjustment for a known propensity score will,
on average, remove all of the bias in x, the propensity score
e(x) is in a sense the most important scalar matching var-
iable.

Matching on e(x) balances the observed covariates X;
however, unlike randomization, matching on e(x) does not
balance unobserved covariates except to the extent that they
are correlated with x. For discussion of methods for ad-
dressing the possible effects of unobserved covariates in
observational studies, see Rosenbaum and Rubin (1983b)
and Rosenbaum (1984a and in press).

In practice, several issues need to be addressed before
the propensity score can be used as a matching variable.
First, the functional form of e(x) is rarely if ever known,
at least in observational studies such as the one we describe,
and therefore e(x) must be estimated from the available data.
Second, exact matches will rarely be available, and so issues
of closeness on e(x) must be addressed. Third, adjustment
for e(x) balances x only in expectation, that is, averaging
over repeated studies. In any particular study, further ad-
justment for x may be required to control chance imbalances
in x. Such adjustments, for example by covariance analysis,
are often used in randomized experiments to control chance
imbalances in observed covariates.

As noted by Rosenbaum and Rubin (1983a, sec. 2.3),
matching on the propensity score is generalization to arbi-
trary x distributions of discriminant matching for multivar-
iate normal x as proposed by Rubin (1970) and discussed
by Cochran and Rubin (1973) and Rubin (1976a,b; 1979;
1980). Propensity matching is not, however, the same as
any of the several procedures proposed by Miettinen (1976):
the propensity score is not generally a confounder score (see
Rosenbaum and Rubin 1983a, sec. 3.3, for discussion).

2.2 Estimating the Propensity Score

We estimated the propensity score in the Danish cohort
using a logit model (Cox 1970):

q(x) = log[(1 — e(x))e(x)] = a + BTf(x),

where a and (8 are parameters to be estimated, g(x) is the
log odds against exposure, and f(x) is a specified function,
which in this instance included quadratic terms and trans-
forms (see Table 1 for details). A logit model for e(x) can
be formally derived from Pr(x|z = 1) if the latter has any
of a variety of exponential family distributions, such as the
multivariate normal N(,, 2), the multivariate logit model
for binary data in Cox (1972), the quadratic exponential
family of Dempster (1971), or the multinomial/multivariate
normal distribution of Dempster (1973); see Rosenbaum and
Rubin [1983a, sec. 2.3(ii)] for details.

The sample means of the maximum likelihood estimates
g(x) of g(x) are 3.06 and 3.76 in the treated and control
groups, respectively. The sample variance of §(x) is 2.3
times greater in the treated group than in the control group.
The standardized difference for §(x) is .77 (calculated as in
the footnote to Table 1), which, as one would expect, is
larger than the standardized difference for any single vari-

able in Table 1. In the treated and control groups, respec-
tively, the minimum values of §(x) are —3.9 and — .6; the
lower quartiles, 2.5 and 3.2; the medians, 3.1 and 3.7; the
upper quartiles, 3.8 and 4.2; and the maximums, 5.1 and
7.5. Three treated children have §(x) values lower than any
control child: their §(x) values are —3.9, — 1.3, and —1.2.

There is, then, a substantial difference along the pro-
pensity score. The larger variance in the treated groups
suggests that finding appropriate matches will be relatively
more difficult than if the variances were equal (Cochran and
Rubin 1973, Table 2.3.1; Rubin 1973a, Table 5.1; Rubin
1980, Table 1). The reason for the difficulty is the concen-
tration of the §(x)’s around 3.76 in the control group and
the wider dispersion of the §(x)’s around 3.06 in the treated
group: for matching, controls are required with low values
of g(x), which are relatively uncommon in the control group.

2.4 Matching Methods That Are Equal-Percent
Bias Reducing

The mean bias or expected difference in x prior to match-
ing is E(x|z = 1) — E(x|z = 0), whereas the mean bias
in x after matching is E(x|]z = 1) — poum, Where poy is
the expected value of x in the matched control group. Gen-
erally, poym depends on the matching method used, whereas
E(x|z = 1) and E(x|z = 0) depend only on population
characteristics. As defined by Rubin (1976a,b), a matching
method is equal-percent bias reducing (EPBR) if the re-
duction in bias is the same for each coordinate of x, that
is, if

ExXz=1) — pou = Y{Elz = 1) — E(x|z = 0)}

for some scalar 0 < y =< 1. If a matching method is not
EPBR, then matching actually increases the bias for some
linear functions of x. If little is known about the relationship
between x and the response variables that will be collected
after matching, then EPBR matching methods are attractive,
since they are the only methods that reduce bias in all var-
iables having linear regression on x. Rosenbaum and Rubin
(1983a, sec. 3.2) show that matching on the population
propensity score alone is EPBR whenever x has a linear
regression on some scalar function of e; that is, whenever
E(x|le) = a + yTg(e) for some scalar function g(-).

3. CONSTRUCTING A MATCHED SAMPLE:
AN EMPIRICAL COMPARISON OF THREE
MULTIVARIATE METHODS

3.1 Overview: How Much Importance Should Be
Given to the Propensity Score?

Matched samples were constructed by using three dif-
ferent methods that matched every treated child to one con-
trol child. By design, all three methods required exact matches
on sex. The three methods differed in the importance given
to the estimated propensity score relative to the other var-
iables in x.

3.2 Nearest Available Matching on the Estimated
Propensity Score

With nearest available propensity score matching,
(a) treated and control children are randomly ordered; (b) the
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first treated child is matched with the control child of the
same sex having the nearest §(x), and both children are
removed from the lists of treated and control children; (c) step
(b) is repeated for the remaining unmatched treated children.
The decision to define distance in terms of §(x) rather than
é(x) was somewhat but not entirely arbitrary and probably
had negligible effect. It did, however, avoid the compres-
sion of the é(x) scale near 0 and 1, and moreover, §(x) was
more nearly normally distributed, which is relevant in the
context of Section 3.4. Nearest available matching on a
scalar covariate x was studied by Rubin (1970), reviewed
by Cochran and Rubin (1973), and extended by Rubin
(1973a,b); its application to matching on linear discriminant
scores with bivariate normal x was studied, using Monte
Carlo, by Rubin (1979, 1980). The effects of random or-
dering in step (a) rather than ordering by g(X) are discussed
by Rubin (1973a).

In Tables 2 and 3, column 1 describes the balance ob-
tained in the samples matched by nearest available pro-
pensity matching. Note that the standardized differences in
Table 2 have the same denominator as the standardized
differences in Table 1, whereas the ¢ statistics indicated by
the footnotes to Table 2 have denominators that are affected

Table 2. Covariate Imbalance in Matched Samples:
Standardized Differences (%)

Mahalanobis
Nearest metric matching
available
matching Including Within
on the the propensity
propensity propensity score
Factor score score calipers
Child characteristics
Sex 0 0 0
Twin -3 0 0
SIBPOS -5 5* 0
C-age 7 6 -6
Mother characteristics
SES -10* 5 -9
Education 17+ 3 -7
Single -7 -3 -2
M-age -8 5 -1
Height -8 3 —9**
Characteristics of
the pregnancy
WGTHGT3 -0 -3 1
PBC415 —14+* 6" 1
PRECLAM 0 0 0
RESPILL -7 0 0
LENGEST -12* -3 -4
Cigarette 0 10+ 9™
Drugs
Antihistamine -3 4 9*
Hormone 8" 6*** 6*
HRMG1 -2 -7 -6
HRMG2 -2 -5 -9
HRMG3 -3 -8 -11*
d(x) _3" _20+ + kkkok _3"

NOTE: The standardized difference in percent is 100(x1 — Xom)/[(s7 + s§g)/2]"’2, where
for each covariate, X1 and Xgm are the sample means in the treated group and matched
control group and s% and sgﬂ are the sample variances in the treated group and control
reservoir. Note that the denominator of the standardized difference is the same for all three
matching methods. The values of paired (*) and two-sample (*) t-statistics are indicated
as follows: * and *, between 1.0 and 1.5 in absolute value; ** and * *, between 1.5 and
2.0 in absolute value; ***, between 2 and 3 in absolute value; ****, above 3 In absolute
value.

36 The American Statistician, February 1985, Vol. 39, No. 1

by the matching and so are not directly comparable. (For
discussion of the relationship between ¢ statistics on co-
variate means and the coverage of confidence intervals for
treatment effects formed by ignoring the variable, see, e.g.,
Cochran 1965, sec. 3.1.) The two-sample t statistics (values
indicated by pluses in Table 2) are relevant for comparing
the distributions of the covariates in the treated and matched
control groups. The paired t statistics (values indicated by
asterisks) are relevant for assessing the effects of residual
biases in the covariates in analyses of outcome variables
based on matched pair differences.

In Table 3, the sample percent reduction in bias for a
covariate is 100(1 — b,,/b;), where b, and b,, are the treated
versus control differences in covariate means initially and
after matching, respectively. When the initial mean sample
bias, b,, is small, the sample percent reduction in bias, 100(1
— by/by), is quite unstable; therefore, we report percent
reductions only for variables with large initial biases (i.e.,
standardized differences above 20% in Table 1).

Tables 2 and 3 both suggest that nearest available match-
ing on the propensity score has removed almost all of the
mean difference along the propensity score—arguably the
most important variable—and that there has been substantial
reduction in the standardized differences for most variables.
Still, the residual differences on several variables (Educa-
tion, PBC415, LENGEST) are bothersome; further analyt-
ical adjustments for these variables might be required, for
example, using analysis of covariance on matched-pair dif-
ferences (Rubin 1973b, 1979).

3.3 Mahalanobis Metric Matching Including the
Propensity Score

Mahalanobis metric matching has been described by
Cochran and Rubin (1973) and Rubin (1976a) and studied
in detail by Carpenter (1977) and Rubin (1979, 1980). With
nearest available Mahalanobis metric matching, treated and
control children are randomly ordered. The first treated child
is matched with the closest control child of the same sex,
where distance is defined by the Mahalanobis distance:

du,v) = (u — v)"Cx'(u — v), (N

where u and v are values of {x7, §(x)}" and Cy is the sample
covariance matrix of {x”, ¢(x)} in the control reservoir. The
two matched children are then removed from the treated

Table 3. Covariate Imbalance in Matched Samples:
Percent Reductions in Bias for Variables With
Substantial Initial Bias (standardized
absolute bias of 20% or greater)

Nearest Mahalanobis metric matching
available
matching on the Including the Within
propensity propensity propensity
score score score calipers
Single 84 93 95
Hormone 71 79 79
SES 140 81 105
M-age 114 91 102
G(x) 96 74 96
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and control lists, and the process is repeated. In the case of
multivariate normal covariates with common covariance
matrix in treated and control groups, Rubin (1976a, Theo-
rem 2) has shown that Mahalanobis metric matching is EPBR.

The results of applying Mahalanobis metric matching are
given in column 2 of Tables 2 and 3. As one might expect,
Mahalanobis metric matching is somewhat more successful
than propensity matching in reducing the standardized dif-
ferences for individual coordinates of x, but it is far less
successful in reducing the standardized difference along the
propensity score. The standardized difference of 20% and
two-sample 7 statistic of —1.99 for §(x) are disturbing.

Mahalanobis metric matching produces several large
matched-pair ¢ statistics, as indicated in the footnotes to
Table 2. The standard deviations of the within-pair differ-
ences in covariate values are smaller than under nearest
available propensity score matching, so the matched-pair ¢
statistics are larger. As noted previously (Sec. 3.2), the ¢
statistics for different methods are not directly comparable.
Nevertheless, the large values of the matched-pair ¢ statistics
indicate that analyses based on matched-pair differences can
be misleading unless analysis of covariance is used to control
within-pair differences due to x.

3.4 Nearest Available Mahalanobis Metric Matching
Within Calipers Defined by the Propensity Score

In an effort to obtain the best features of both previous
methods, we now consider a hybrid matching method that
first defines a subset of potential controls who are close to
each treated child on the propensity score (i.e., within “cal-
ipers,” Althauser and Rubin 1971) and then selects the
control child from this subset by using nearest available
Mabhalanobis metric matching (for variables {x, §(x)}). The
details of the procedure are given in Figure 1. With mul-
tivariate normal covariates having common covariance ma-
trices in treated and control groups, and with §(x) replaced
by its population value (the linear discriminant), this match-
ing method would be EPBR, since each of the two stages
would reduce bias in x by a constant percentage. A com-
putational advantage of this method is a substantial reduction
in the number of Mahalanobis distances that need to be

1. Randomly order the treated children.

2. Caliper Matching on the Propensity Score: For the first
treated child, find all available untreated children of the
same sex with §(x) values that differ from the §(x) value
for the treated child by less than a specified constant c.
If there is no such untreated child, match the treated child
to the untreated child of the same sex with the nearest
value of §(x).

3. Nearest Available Mahalanobis Metric Matching Within
Calipers: From the subset of children defined in step 2,
select as a match the untreated child of the same sex
who is closest in the sense of the Mahalanobis distance
for the variables {x, §(x)}.

4. Remove the treated child and the matched control child
from the lists of treated and untreated children. Go to step
2 for the next treated child.

Figure 1. Nearest Available Mahalanobis Metric Matching Within
Calipers Defined by the Propensity Score.

computed. The method in Section 3.3 required the com-
putation of about 1.5 million Mahalanobis distances.

The caliper width, ¢, used in step 2 of Figure 1 was
determined by using results from Cochran and Rubin (1973)
concerning the performance of caliper matching. Write
o? and 0@z for the variances of §(x) in the treated and
untreated groups, and let o = [(o} + o&)/2]"%. Table
2.3.1 of Cochran and Rubin (1973) suggests that when
o¥/ody = 2, a caliper width of ¢ = .20 would remove
98% of the bias in a normally distributed covariate, that
¢ = .40 would remove 93%, and that ¢ = .60 would
remove 86%. That table also suggests that narrower caliper
widths (i.e., smaller values of ¢) are required as o}/od
increases. The point estimate of o#/adg for §(x) is s¥/sdg
= 2.3. Therefore, in the hope of removing at least 5G% of
the bias along ¢(x) by caliper matching, we took ¢ = .25s
= (.25)(.930) = .232, where s = [(s? + s&)/2]"2. (For
further discussion of caliper matching, see Cochran 1972
and Raynor 1983.) There were four treated children who
had no available matches within the calipers; following step
2 of Figure 1, they were matched with the nearest available
control on §(x).

Some results of this matching appear in column 3 of
Tables 2 and 3. Mahalanobis metric matching within cali-
pers defined by the propensity score appears superior to the
two other methods: it is better than matching on the pro-
pensity score in that it yields fewer standardized differences
above 10% in absolute value, and it is better than Mahal-
anobis metric matching in controlling the difference along
the propensity score.

3.5 Nonlinear Response Surfaces

Tables 1-3 compare the three matching methods in terms
of the means of x in the treated and matched control groups.
If, however, the response has a nonlinear regression on x
in the treated and control groups, then equal x means in
matched samples do not necessarily indicate the absence of
bias due to x. For example, if the regressions on x are
quadratic, then the means on x and xx” are both relevant.
Table 4 summarizes the standardized biases for 230 =
(%) + 2 x 20 variables: the 20 coordinates of (x, §(x))
with sex excluded because exact matches for sex were ob-
tained, the squares of these 20 variables, and the cross
products of pairs of these variables. The third matching
method—Mahalanobis metric matching within propensity
score calipers—appears clearly superior.

Table 4. Summarized Standardized Differences
(in %) for Covariates, Squares of Covariates,
and Cross Products of Covariates

Root mean Maximum

square* absolute
Prior to matching 24 78
Nearest available matching on
the propensity score 9 49
Mahalanobis metric matching
Including the propensity score 9 76
Using propensity score calipers 7 27

*100(b2 + s2)!”2, where b and sZ are the sample mean and vanance of standardized
differences for the (30) + 2(3%) = 230 variables.
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4. SUMMARY

When combined with covariance adjustments of matched-
pair differences, multivariate matched sampling is known
to be one of the most robust methods for reducing bias due
to imbalances in observed covariates (Rubin 1973b, 1979).
Three methods for multivariate matched sampling have been
illustrated and compared on data concerning the effects of
prenatal barbiturate exposure. The first method was nearest
available matching on the estimated propensity score; this
method required less computation than the others and was
fairly successful in reducing bias. The second method was
nearest available Mahalanobis metric matching using all
variables and the estimated propensity score; this method
produced smaller standardized differences for individual
variables but left a substantial difference along the pro-
pensity score. The third method—Mahalanobis metric
matching within calipers defined by the estimated propensity
score—appeared superior to the others with respect to bal-
ancing the covariates, their squares, and their cross prod-
ucts. Since the current study has examined just three possible
methods on a single set of data, additional work on mul-
tivariate matching is needed in several areas: (a) theory con-
cerning the effects on the best choice of matching method
of (i) reservoir size, (ii) the magnitude of initial biases,
(iii) dimensionality of x, and (iv) covariate distributions;
(b) theory concerning multivariate measures of the quality
of matched samples involving non-Gaussian covariates;
and (c) further empirical studies of multivariate matching
methods.

[Received December 1983. Revised September 1984.]
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