Handout #6: Geometric Sequences

ECON 300: Intermediate Price Theory

Topic 1. Geometric Sequences

A geometric sequence is a sequence that can be defined by the initial value @, and a common ratio r,
with 7 terms. We can express this as:
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The sum of this sequence can be found using the following formula:
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Topic 2. Geometric Series

Suppose that the geometric sequence defined above ends up going infinitely (n — o0). Then, the
sum of this sequence, which is called the geometric series, can be found as:
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Provided thata # 0, —1 < r < 1,and 7 # 0, the sum of this sequence can be found using the
following formula:
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Topic 3. Some Use Cases: Infinite Money?

Suppose you are given an investment opportunity. You must pay an up-front cost now, and then this
investment will yield $100 every single year at the end of each year until the end of time. Meanwhile,
we assume that the interest rate remains at 5% over the entire duration. Then the present value of this
investment opportunity can be calculated as:
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Topic 4. Some Use Cases: Bonds?

Suppose you are given another investment opportunity. The setup is the same as the previous case,
but this time the payment ends in 5 years. Then, we can find the present value of this investment oppor-
tunity as:
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Using the formula from Topic 1, we can find the present value as:
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