- Name: \qquad
Monmouth
COLLEGE
- Date:
- Section: \qquad

ECON 300: Intermediate Price Theory

Problem Set \#4: Suggested Solutions

INSTRUCTIONS:

- This problem set is not graded.

Problem 1. Utility Maximization

The consumer is participating in a market with good x and good y. The market prices are given as $P_{x}=3$ and $P_{y}=2$, respectively. The consumer's income is $M=45$, and their utility functions are:

$$
u(x, y)=\min \{2 x, 3 y\}
$$

1.A What does the functional form of the utility function imply about the relationship between goods x and y ?

Solution:

The consumer's utility function takes the Leontief form (min function). We use this type of utility function when we know that the goods x and y are Perfect Complements that must be used in conjunction with another.
1.B What is the optimal ratio of goods x and y ?

Solution:

We find the optimal ratio of consumption by equalizing the arguments of the min function:

$$
2 x=3 y \Rightarrow y=\frac{2}{3} x
$$

1.C What is the mathematical expression of the consumer's budget constraint?

Solution:
Plug in the values of P_{x}, P_{y}, and M into the generic form $P_{x} x+P_{y} y=M$:

$$
3 x+2 y=45
$$

1.D Find the optimal bundle $\left(x^{*}, y^{*}\right)$.

Solution:

Plug in the optimal ratio we found in 1.B. into the budget constraint we found in 1.C:

$$
3 x+2 y=45 \Rightarrow 3 x+2\left(\frac{2}{3} x\right)=45 \quad \Rightarrow \quad \frac{13}{3} x=45 \quad x^{*}=\frac{135}{13}
$$

Plug in x^{*} into the optimal ratio equation from 1.B:

$$
y^{*}=\frac{2}{3} x^{*} \Rightarrow y^{*}=\frac{2}{3} \cdot \frac{135}{13} \Rightarrow y^{*}=\frac{90}{13}
$$

1.E Plot and label the consumer's optimization problem in the commodity space.

Problem 2. Utility Maximization

The consumer is participating in a market with good x and good y. The market prices are given as $P_{x}=3$ and $P_{y}=5$, respectively. The consumer's income is $M=60$, and their utility functions are:

$$
u(x, y)=x^{3} y^{2}
$$

2.A Find the expressions for the marginal utilities of good x and $\operatorname{good} y$.

- $M U_{x}=\frac{\partial}{\partial x} x^{3} y^{2}=y^{2} \cdot 3 \cdot x^{3-1}=3 x^{2} y^{2}$
- $M U_{y}=\frac{\partial}{\partial y} x^{3} y^{2}=x^{3} \cdot 2 \cdot y^{2-1}=2 x^{3} y$
2.B What is the optimal ratio of goods x and y ?

Solution:

First we find the marginal rate of substitution:

$$
M R S=\frac{M U_{x}}{M U_{y}}=\frac{3 x^{2} y^{2}}{2 x^{3} y}=\frac{3 y}{2 x}
$$

Then use the optimality condition by setting the $M R S$ equal to the price ratio:

$$
M R S=\frac{P_{x}}{P_{y}} \Rightarrow \frac{3 y}{2 x}=\frac{3}{5} \Rightarrow 15 y=6 x \Rightarrow y=\frac{2}{5} x
$$

2.C What is the mathematical expression of the consumer's budget constraint?

Solution:

Plug in the values of P_{x}, P_{y}, and M into the generic form $P_{x} x+P_{y} y=M$:

$$
3 x+5 y=60
$$

2.D Find the optimal bundle $\left(x^{*}, y^{*}\right)$.

Solution:

Plug in the optimal ratio we found in 2.B. into the budget constraint we found in 2.C:

$$
3 x+5 y=60 \Rightarrow 3 x+5\left(\frac{2}{5} x\right)=60 \Rightarrow 5 x=60 x^{*}=12
$$

Plug in x^{*} into the optimal ratio equation from 2.B:

$$
y^{*}=\frac{2}{5} x^{*} \Rightarrow y^{*}=\frac{2}{5} \cdot 12 \Rightarrow y^{*}=\frac{24}{5}
$$

2.E Plot and label the consumer's optimization problem in the commodity space.

Problem 3. Individual to Market Demand

Suppose we have a market for good x with two consumers. Their individual demand functions are:

- Consumer 1: $x_{1}=10-\frac{1}{4} P_{x}$
- Consumer 2: $x_{2}=20-\frac{2}{3} P_{x}$
3.A Find the inverse demand function for consumer 1.

Solution:

$$
x_{1}=10-\frac{1}{4} P_{x} \Rightarrow \frac{1}{4} P_{x}=10-x_{1} \Rightarrow P_{x}=40-4 x_{1}
$$

3.B Find the inverse demand function for consumer 2.

Solution:

$$
x_{2}=20-\frac{2}{3} P_{x} \Rightarrow \frac{2}{3} P_{x}=20-x_{2} \Rightarrow P_{x}=30-\frac{3}{2} x_{2}
$$

3.C Plot the consumer 1's demand curve to the left, and consumer 2's demand curve to the right.

3.D Plot the market demand for $\operatorname{good} x$.

3.E (ADVANCED) Find the formula for the market demand.

Solution:

The market demand will depend on the market prices. Based on the results from 3.D, we can see that until consumer 2 begins to purchase good x, the market consists of only consumer 1 . So, for prices above 30 , the market demand is the individual demand of consumer 1 .

Meanwhile, when the market price dips below 30, then consumer 2 begins to purchase good x, so the market demand for market prices below 30 should be the (horizontal) sum of the two consumers. So, the inverse market demand should be:

$$
X\left(P_{x}, P_{-x}, M\right)= \begin{cases}10-\frac{1}{4} P_{x}, & \text { if } 30<P_{x} \leq 40 \\ \frac{140}{11}-\frac{2}{11} P_{x}, & \text { if } 0 \leq P_{x} \leq 30\end{cases}
$$

Problem 4. Own Price Elasticities and Revenues

The market price for good x is currently $P_{x}=600$, and the market demand for good x is given as:

$$
X=5,000-5 P_{x}
$$

4.A Calculate the (own) price elasticity of demand for good x.

Solution:

Apply the formula for the (own) price elasticity of demand, and find:

$$
\varepsilon_{x p}=\frac{\partial X}{\partial P_{x}} \cdot \frac{P_{x}}{X}=-5 \cdot \frac{600}{5000-5 \cdot 600}=-5 \cdot \frac{600}{2000} \Rightarrow \varepsilon_{x p}=-\frac{3}{2}
$$

4.B Complete the following statement regarding the (own) price elasticity of demand:

```
"When the price of good x increases by 1%, then
    the quantity demanded of x decreases by 1.5 %."
```

4.C Would you consider the demand for good x to be inelastic? elastic? unit-elastic? Why?

Solution:
Good x is considered to be elastic, as the absolute value of price elasticity is greater than 1:

$$
\left|\varepsilon_{x p}\right|=\frac{3}{2}>1
$$

4.D Calculate the Total Revenue (in terms of price) for the producer of good x.

Solution:

Total revenue is simply price times quantity:

$$
T R\left(P_{x}\right)=P_{x} \cdot X=P_{x} \cdot\left(5000-5 P_{x}\right) \Rightarrow T R\left(P_{x}\right)=5000 P_{x}-5 P_{x}^{2}
$$

4.E Find the expression for Marginal Revenue (in terms of price) for the producer of good x.

Solution:
Take the partial derivative of $T R$ with respect to P_{x} :

$$
\begin{aligned}
M R\left(P_{x}\right)=\frac{\partial T R\left(P_{x}\right)}{\partial P_{x}} & =\frac{\partial}{\partial P_{x}}\left(5000 P_{x}-5 P_{x}^{2}\right) \\
& =\frac{\partial}{\partial P_{x}} 5000 P_{x}-\frac{\partial}{\partial P_{x}} 5 P_{x}^{2} \\
& =5000-10 P_{x} \\
& \Rightarrow M R\left(P_{x}\right)=5000-10 P_{x}
\end{aligned}
$$

4.F Is the producer maximizing their revenue if the market price is set at $P_{x}=600$? Why?

Solution:
From the results in 4.E., when the market price is set at $P_{x}=600$, marginal revenue is...

$$
M R\left(P_{x}\right)=5000-10 P_{x} \Rightarrow M R\left(P_{x}\right)=-1000<0
$$

This implies that when the producer lowers prices, the total revenue they obtain will increase. Therefore, when the market price is set to be $P_{x}=600$, the producer is not maximizing their revenue.
4.G If the price of good x decreases to $P_{x}=500$, is the demand for $\operatorname{good} x$ inelastic? elastic? unitelastic? Why?

Solution:
Apply the formula for the (own) price elasticity of demand, and find:

$$
\varepsilon_{x p}=\frac{\partial X}{\partial P_{x}} \cdot \frac{P_{x}}{X}=-5 \cdot \frac{500}{5000-5 \cdot 500}=-5 \cdot \frac{500}{2500} \Rightarrow \varepsilon_{x p}=-1
$$

When the market price of good x is set to be 500 , the (own) price elasticity of demand is -1 , and the demand is unit elastic.
4.H Is the producer maxmizing revenue when the market price is set at $P_{x}=500$? Why? Solution:

Recall from the answer in part 4.E, we have the expression for the marginal revenue:

$$
M R\left(P_{x}\right)=5000-10 P_{x}
$$

When the market price of good x is set to be 500 , the marginal revenue will be 0 . This implies that the total revenue of the producer is maximized.

Problem 5. Other Types of Elasticities

The current price of good x is $P_{x}=10$, the price of good y is $P_{y}=20$, and the overall income level of the economy is $M=100$. The market demand for good x is given as follows:

$$
X=500-30 P_{x}+5 M+10 P_{y}
$$

5.A Calculate the (own) price elasticity of demand for good x.

Solution:
Apply the formula for the own price elasticity:

$$
\varepsilon_{x p}=\frac{\partial X}{\partial P_{x}} \cdot \frac{P_{x}}{X}=-30 \cdot \frac{10}{500-30 \cdot 10+5 \cdot 100+10 \cdot 20}=-30 \cdot \frac{10}{900}=-\frac{1}{3}
$$

5.B Complete the following statement regarding the (own) price elasticity of demand:

```
"When the price of good x increases by 1%, then
the quantity demanded of x decreases by 0.33%."
```

5.C Would you consider the demand for good x to be elastic? Why?

Solution:

Since the absolute value of price elasticity is less than 1 , the demand is inelastic.
5.D Is good x an ordinary good or a Giffen good? Why?

Solution:

Since the price elasticity is negative, it means that for a positive change in price $\left(\Delta P_{x} \uparrow\right)$, the change quantity demanded is negative $(\Delta x \downarrow)$. This means that the good is an ordinary good.
5.E If the price of good x increases to $P_{x}=30$, is the demand for good x elastic? Why?

Solution:

Apply the formula for the own price elasticity:

$$
\varepsilon_{x p}=\frac{\partial X}{\partial P_{x}} \cdot \frac{P_{x}}{X}=-30 \cdot \frac{30}{500-30 \cdot 30+5 \cdot 100+10 \cdot 20}=-30 \cdot \frac{30}{300}=-3
$$

Since the absolute value of price elasticity is greater than 1 , the demand is elastic.
5.F Calculate the income elasticity of demand when $P_{x}=30, P_{y}=20, M=100$.

Solution:
Apply the formula for income elasticity:

$$
\varepsilon_{x m}=\frac{\partial X}{\partial M} \cdot \frac{M}{X}=5 \cdot \frac{100}{500-30 \cdot 30+5 \cdot 100+10 \cdot 20}=5 \cdot \frac{100}{300}=\frac{5}{3}
$$

5.G Complete the following statement regarding the income elasticity of demand:

```
"When the consumers' income increases by 1%, then
the quantity demanded of x increases by 1.67%."
```

5.H Is good x a luxury good or a necessary good? Why?

Solution:
Since the quantity demanded increases at a greater rate compared to the increase in income, good x is a luxury good.
5.I Calculate the cross price elasticity of demand when $P_{x}=30, P_{y}=20, M=100$.

Solution:

Apply the formula for income elasticity:

$$
\varepsilon_{x y}=\frac{\partial X}{\partial P_{y}} \cdot \frac{P_{y}}{X}=10 \cdot \frac{20}{500-30 \cdot 30+5 \cdot 100+10 \cdot 20}=10 \cdot \frac{20}{300}=\frac{2}{3}
$$

5.J Complete the following statement regarding the income elasticity of demand:

```
"When the price of good y increases by 1%, then
the quantity demanded of x increases by 0.67%."
```

5.K Is good y a complement to good x ? Is it a substitute to good x ? Why?

Solution:

When the price of good y increases ($\Delta P_{y} \uparrow$), the quantity demanded of x increases $(\Delta x \uparrow$). This happens when the two goods x and y are substitutes.

