Handout \#6: Geometric Sequences

ECON 300: Intermediate Price Theory

Fall 2023

Topic 1. Geometric Sequences

A geometric sequence is a sequence that can be defined by the initial value a, and a common ratio r, with n terms. We can express this as:

$$
a \quad a r \quad a r^{2} \quad a r^{3} \quad a r^{4} \quad \cdots \quad a r^{n-1}
$$

The sum of this sequence can be found using the following formula:

$$
S_{n}=a+a r+a r^{2}+\cdots+a r^{n-1}=\sum_{t=1}^{n} a r^{t-1}=a\left(\frac{1-r^{n}}{1-r}\right)
$$

Topic 2. Geometric Series

Suppose that the geometric sequence defined above ends up going infinitely $(n \rightarrow \infty)$. Then, the sum of this sequence, which is called the geometric series, can be found as:

$$
S=a+a r+a r^{2}+\cdots
$$

Provided that $a \neq 0,-1<r<1$, and $r \neq 0$, the sum of this sequence can be found using the following formula:

$$
S=a+a r+a r^{2}+\cdots=\sum_{t=0}^{\infty} a r^{t}=\frac{a}{1-r}
$$

Topic 3. Some Use Cases: Infinite Money?

Suppose you are given an investment opportunity. You must pay an up-front cost now, and then this investment will yield $\$ 100$ every single year at the end of each year until the end of time. Meanwhile, we assume that the interest rate remains at 5% over the entire duration. Then the present value of this investment opportunity can be calculated as:

$$
P V=100 \cdot \frac{1}{1+0.05}+100 \cdot\left(\frac{1}{1+0.05}\right)^{2}+100 \cdot\left(\frac{1}{1+0.05}\right)^{3}+\cdots=\frac{\frac{100}{1.05}}{1-\frac{1}{1.05}}=2,000
$$

Topic 4. Some Use Cases: Bonds?

Suppose you are given another investment opportunity. The setup is the same as the previous case, but this time the payment ends in 5 years. Then, we can find the present value of this investment opportunity as:

$$
P V=\frac{100}{1+0.05}+\frac{100}{(1+0.05)^{2}}+\frac{100}{(1+0.05)^{3}}+\frac{100}{(1+0.05)^{4}}+\frac{100}{(1+0.05)^{5}}
$$

Using the formula from Topic 1, we can find the present value as:

$$
P V=\frac{100}{1.05}\left\{\frac{1-\left(\frac{1}{1+0.05}\right)^{5}}{1-\frac{1}{1+0.05}}\right\} \simeq 432.95
$$

