# Handout \#1: Systems of Equations and Exponents 

ECON 300: Intermediate Price Theory

Fall 2023

## Topic 1. Systems of Equations

Throughout the semester, we will frequently encounter scenarios in which we must solve for a set of unknowns. These unknowns are interconnected through a system of equations. In ECON 300, our focus will primarily be on situations involving two unknowns, interconnected by a set of linear equations. For example, you might be tasked with determining the values of $x$ and $y$ when...

$$
\begin{array}{r}
2 x+3 y=4 \\
x+y=3 \tag{2}
\end{array}
$$

One method of approach is the substitution method. First, we rearrange equation (2):

$$
\begin{equation*}
x=3-y \tag{3}
\end{equation*}
$$

Then we plug equation (3) into equation (1), and solve for $y$ :

$$
\begin{equation*}
2(3-y)+3 y=4 \Rightarrow y=-2 \tag{4}
\end{equation*}
$$

Then we insert the result from (4) into either equations (1) or (2) to find $x:^{1}$

$$
x+(-2)=3 \Rightarrow x=5
$$

Please complete the exercise by finding the values of $x$ and $y$ when...

1. $\left\{\begin{array}{l}2 x+y=5 \\ x-3 y=-1\end{array}\right.$
[^0]
## Topic 2. Exponents

Another common concept we will encounter throughout the semester pertains to exponents. Let's mention some fundamental facts about exponents...

- $x^{a}=\overbrace{x \times x \times \cdots \times x}^{a \text { times }}$
- $x^{-a}=\frac{1}{x^{a}}$
- $x^{0}=1$

The following rules concerning exponents will prove useful as you progress through this course:

- $x^{a} \times x^{b}=x^{a+b}$
- $\frac{x^{a}}{x^{b}}=x^{a-b}$
- $x^{a} \times y^{a}=(x \times y)^{a}$
- $\frac{x^{a}}{y^{a}}=\left(\frac{x}{y}\right)^{a}$
- $\left(x^{a}\right)^{b}=x^{a \times b}$

$$
y^{a} \quad(y)
$$

Let's review a few of these rules and examine why they are logical. To illustrate the principles behind these rules, I'll employ $a=3$ and $b=2$. Firstly, why does $x^{a} \times x^{b}=x^{a+b}$ ?

$$
x^{3} \times x^{2}=\overbrace{\underbrace{(x \times x \times x)}_{3 \text { times }} \times \underbrace{(x \times x)}_{2 \text { times }}}^{3+2 \text { times }}=x^{5}
$$

Then why is $x^{a} / x^{b}=x^{a-b}$.

$$
\frac{x^{3}}{x^{2}}=\frac{\overbrace{\underbrace{x \times x \times x}_{2 \text { times }}}^{3 \text { times }}}{\underbrace{x \times x}_{x \times x}}=\frac{x \times \not \subset \times \not \subset}{\mathscr{X} \times \not X}=x^{3-2}=x
$$

How about $x^{a} \times y^{a}=(x \times y)^{a}$ ?

$$
\begin{aligned}
x^{3} \times y^{3} & =\overbrace{(x \times x \times x)}^{3 \text { times }} \times \overbrace{(y \times y \times y)}^{3 \text { times }} \\
& =x \times y \times x \times y \times x \times y \\
& =\underbrace{(x \times y) \times(x \times y) \times(x \times y)}_{3 \text { times }}=(x \times y)^{3}
\end{aligned}
$$

How does $\left(x^{a} / y^{a}\right)=(x / y)^{a}$ ?

$$
\frac{x^{3}}{y^{3}}=\underbrace{\frac{\overbrace{x \times x \times x}^{3 \text { times }}}{y \times y \times y}}_{3 \text { times }}=\underbrace{\left(\frac{x}{y}\right) \times\left(\frac{x}{y}\right) \times\left(\frac{x}{y}\right)}_{3 \text { times }}=\left(\frac{x}{y}\right)^{3}
$$

Finally why $\left(x^{a}\right)^{b}=x^{a \times b}$ ?

$$
\left(x^{3}\right)^{2}=(\underbrace{x \times x \times x}_{3 \text { times }})^{2}=\underbrace{(x \times x \times x) \times(x \times x \times x)}_{3 \times 2 \text { times }}=x^{6}
$$

Please complete the following exercises:
2. Simplify: $x^{3} \times x^{2}$
3. Simplify: $\frac{x^{3}}{x}$
4. Simplify: $x^{3} \times y^{3}$
5. Simplify: $6 x^{2} \times \frac{1}{2} x^{3}$
6. Simplify: $x^{\frac{1}{2}} \times x^{3}$
7. Simplify: $\frac{x^{\frac{1}{2}}}{x^{-\frac{1}{2}}}$

Now for a slightly more challenging exercise: Solve for $x$ and $y$ when...

$$
\begin{aligned}
& \frac{\frac{1}{2} x^{-\frac{1}{2}} y^{\frac{1}{2}}}{\frac{1}{2} x^{\frac{1}{2}} y^{-\frac{1}{2}}}=\frac{1}{2} \\
& 4 x+8 y=10
\end{aligned}
$$


[^0]:    ${ }^{1}$ In this case, I use equation (2).

